

February 1999

CATCHMENT HYDROLOGY

URBAN STORMWATER QUALITY: A STATISTICAL OVERVIEW

Hugh P. Duncan

Report 99/3

February 1999

Duncan, H

Urban stormwater quality: a statistical overview

Bibliography. ISBN 1876006455

- 1. Water quality Statistics. 2. Water Pollution Statistics. 3. Urban runoff Statistics.
- 4. Storm sewers Statistics. I. Cooperative Research Centre for Catchment Hydrology.
- II. Title. (Series: Report (Cooperative Research Centre for Catchment Hydrology); 99/3).

628.21021

Keywords

Storm Sewage
Water Quality (Natural Waters)
Urban Areas
Pollution (Surface Water)
Pollution Sources
Statistical Analysis
Quality (Microbiological)

© Cooperative Research Centre for Catchment Hydrology, 1999 ISSN 1039-7361

PREFACE

The Cooperative Research Centre for Catchment Hydrology (CRCCH) commenced in July 1992. Its Urban Hydrology research program initially comprised two main projects. Project C1 investigated methods for estimating runoff and pollution loads from urban catchments over a range of time and space scales. Project C2 brought together several studies aimed at improving design and management procedures for urban waterways.

The Urban Hydrology research program was restructured in 1996 to reflect the evolving emphasis of the program. Project U1 addresses gross pollutant management and the behaviour of urban pollution control ponds, and develops the work of the old Project C2. Project U2 investigates the sources, movement, and modelling of pollutants in urban areas, and extends the work of the old Project C1.

This report was prepared for Projects C1 and U2 by Hugh Duncan, seconded to the CRCCH from Melbourne Water. It describes the analysis of stormwater quality data from over 500 Australian and overseas studies. The report summarises stormwater concentrations of 21 water quality parameters, and examines the relationships between contaminant concentrations and physical and climatic catchment characteristics.

Tom McMahon
Program Leader, Urban Hydrology
Cooperative Research Centre for Catchment Hydrology

ABSTRACT

This report presents a statistical overview of urban stormwater quality, obtained by analysing the results of many investigations reported in the literature. The objective is to assess the broad scale behaviour of urban runoff quality, and its interactions with land use and other catchment characteristics. A data management system that permits consistent and objective comparison between studies is described.

Information on each water quality parameter includes a brief description of the contaminant, its likely sources and possible effects, the statistical distribution of concentration data, means and standard deviations for each land use with sufficient data, and significant relationships with catchment characteristics. Correlations between water quality parameters are also investigated.

Concentrations are approximately log-normally distributed for all water quality parameters investigated except pH, which is approximately normally distributed. Concentrations of suspended solids, total nitrogen, and total phosphorus are on average highest for agricultural catchments, intermediate for urban catchments, and lowest for forested catchments. Concentrations of total lead, BOD, COD, total coliforms, fecal coliforms, and fecal streptococci are higher on average from high urban catchments than from all low urban catchments taken as a single group.

Roads are a major source of most contaminants in urban runoff. This is due to their lower elevation as well as their vehicular traffic. Concentrations from roofs are substantially lower on average than concentrations from roads and all high urban zonings, for all parameters tested except zinc. Within urban areas, residential zonings tend to produce lower concentrations of metals and organic carbon, and higher concentrations of phosphorus and microbiological measures than the other urban zonings, but the explanatory power is low.

Urban sites with higher mean annual rainfall produce lower stormwater concentrations, on average, for most metal and non-metal parameters, but not for the microbiological measures. For suspended solids, which shows the strongest effect, increasing the mean annual rainfall by 500 mm approximately halves the most likely concentration in runoff. Sites with higher population density produce higher stormwater concentrations, on average, for total nitrogen, BOD, and fecal coliforms, and perhaps for COD and total coliforms, but not for metals.

Correlations between water quality parameters over many measurement sites are often low. As a result, there are only a few cases where one quality parameter can provide a good estimate of another parameter. No single quality parameter can provide a good estimate of a range of other parameters.

The explanatory power of all normally reported catchment characteristics is low, which implies that one or more important explanatory variables are yet to be recognised. Possible contenders include geological age of catchment rocks and soils, and short term rainfall intensity. A higher level of detail in modelling may also be helpful, but would be difficult to apply in practice.

TABLE OF CONTENTS

1.	INT	RODUCTION	1
	1.1	Report Layout	
2.	DAT	TA MANAGEMENT	1
	2.1	Water Quality Variables	
	2.2	Catchment Characteristics	
	2.3	Data File Structure	
3.	STA	TISTICS OF SINGLE PARAMETERS	
	3.1	Suspended Solids	
	3.2	Total Phosphorus	
	3.3	Total Nitrogen	. 14
	3.4	Chemical Oxygen Demand	
	3.5	Biochemical Oxygen Demand	. 21
	3.6	Oil & Grease	. 24
	3.7	Total Organic Carbon	. 26
	3.8	pH	. 27
	3.9	Turbidity	. 29
	3.10	Total Lead	. 31
	3.11	Total Zinc	. 36
	3.12	Total Copper	. 40
	3.13	Total Cadmium	. 43
	3.14		
	3.15	Total Nickel	. 49
		Total Iron	
		Total Manganese	
		Total Mercury	
		Total Coliforms	
		Fecal Coliforms	
	3.21	Fecal Streptococci	. 60
4.	COR	RELATIONS BETWEEN PARAMETERS	. 61
5.	DISC	CUSSION	. 65
	5.1	Land Use	. 65
	5.2	Catchment Characteristics	. 66
	5.3	Explanatory Power	. 67
б.	CON	CLUSIONS	. 68
7.	REFI	ERENCES	. 68
AP	PENI	DIX A: Data	
4 P	PENI	DIX B: Descriptive Statistics	

APPENDIX C: Coefficients of Concentration vs Catchment Characteristics

LIST OF FIGURES

Figure 1.	Land Use Groups	3
Figure 2.	Suspended Solids Normal Probability Plot	4
Figure 3.	Suspended Solids Concentration vs Land Use	6
Figure 4.	Suspended Solids Concentration (Roads) vs Annual Rainfall	7
Figure 5.	Suspended Solids Concentration (High Urban) vs Annual Rainfall	8
Figure 6.	Suspended Solids Concentration (Low Urban) vs Annual Rainfall	9
Figure 7.	Total Phosphorus Normal Probability Plot	11
Figure 8.	Total Phosphorus Concentration vs Land Use	12
Figure 9.	Total Phosphorus Concentration (Roads) vs Traffic Density	13
Figure 10.	Total Nitrogen Normal Probability Plot	14
Figure 11.	Total Nitrogen Concentration vs Land Use	15
Figure 12.	Total Nitrogen Concentration (Roads) vs Annual Rainfall	16
Figure 13.	Total Nitrogen Concentration (High Urban) vs Annual Rainfall	17
Figure 14.	Total Nitrogen Concentration (High Urban) vs Population Density	17
Figure 15.	Total Nitrogen Concentration (Low Urban) vs Annual Rainfall	18
Figure 16.	Chemical Oxygen Demand Normal Probability Plot	19
Figure 17.	Chemical Oxygen Demand vs Land Use	20
Figure 18.	Chemical Oxygen Demand (Roads) vs Annual Rainfall	21
Figure 19.	Chemical Oxygen Demand (High Urban) vs Annual Rainfall	21
Figure 20.	Biochemical Oxygen Demand Normal Probability Plot	22
Figure 21.	Biochemical Oxygen Demand vs Land Use	22
Figure 22.	Biochemical Oxygen Demand (High Urban) vs Population Density	23
Figure 23.	Oil & Grease Normal Probability Plot	24
Figure 24.	Oil & Grease Concentration vs Land Use	25
Figure 25.	Total Organic Carbon Normal Probability Plot	26
Figure 26.	Total Organic Carbon Concentration vs Land Use	26
Figure 27.	Total Organic Carbon Concentration (High Urban) vs Annual Rainfall	27
Figure 28.	pH Normal Probability Plot	28
Figure 29.	pH vs Land Use	29
Figure 30.	Turbidity Normal Probability Plot	30
Figure 31.	Turbidity vs Land Use	30
Figure 32.	Total Lead Normal Probability Plot (All Data)	32
Figure 33.	Total Lead Normal Probability Plot (High Urban)	32
Figure 34.	Total Lead Concentration vs Land Use	33
Figure 35.	Total Lead Concentration (Roads) vs Percent Impervious	34
Figure 36.	Total Lead Concentration (Roads) vs Traffic Density	34
Figure 37.	Total Lead Concentration (High Urban) vs Percent Impervious	35
Figure 38.	Total Zinc Normal Probability Plot	36
•	Total Zinc Concentration vs Land Use	
Figure 40.	Total Zinc Concentration (High Urban) vs Annual Rainfall	38
Figure 41.	Total Zinc Concentration (High Urban) vs Percent Impervious	39

Figure 42.	Total Copper Normal Probability Plot	.40
Figure 43.	Total Copper Concentration vs Land Use	.41
Figure 44.	Total Copper Concentration (Roads) vs Annual Rainfall	.42
Figure 45.	Total Copper Concentration (High Urban) vs Annual Rainfall	.42
Figure 46.	Total Cadmium Normal Probability Plot	.44
Figure 47.	Total Cadmium Concentration vs Land Use	.44
Figure 48.	Total Cadmium Concentration (High Urban) vs Percent Impervious	.45
Figure 49.	Total Chromium Normal Probability Plot	.47
Figure 50.	Total Chromium Concentration vs Land Use	.47
Figure 51.	Total Chromium Concentration (High Urban) vs Population Density	.48
Figure 52.	Total Chromium Concentration (High Urban) vs Annual Rainfall	.48
Figure 53.	Total Nickel Normal Probability Plot	.49
Figure 54.	Total Nickel Concentration vs Land Use	.50
Figure 55.	Total Iron Normal Probability Plot	.51
Figure 56.	Total Iron Concentration vs Land Use	.51
Figure 57.	Total Iron Concentration (High Urban) vs Annual Rainfall	.52
Figure 58.	Total Manganese Normal Probability Plot	.53
	Total Manganese Concentration vs Land Use	
Figure 60.	Total Mercury Normal Probability Plot	.54
	Total Mercury Concentration vs Land Use	
	Total Mercury Concentration (High Urban) vs Annual Rainfall	
	Total Coliforms Normal Probability Plot	
	Total Coliforms vs Land Use	
	Fecal Coliforms Normal Probability Plot	
	Fecal Coliforms vs Land Use	
	Fecal Coliforms (High Urban) vs Population Density	
	Fecal Streptococci Normal Probability Plot	
Figure 69.	Fecal Streptococci vs Land Use	.61
	Total Phosphorus vs Suspended Solids	
	COD vs TOC	
	BOD vs TOC	
Figure 73.	BOD vs COD	63
Figure 74.	Total Manganese vs Suspended Solids	63
	Total Iron vs Suspended Solids	
	Total Manganese vs Total Iron	
	Fecal Coliforms vs Total Coliforms	
	Fecal Streptococci vs Total Coliforms	
	Fecal Streptococci vs Fecal Coliforms	
	Suspended Solids vs Turbidity	
	Total Lead vs Turbidity	
	Total Nickel vs COD	

LIST OF TABLES

Table 1.	Suspended Solids Summary Statistics	10
Table 2.	Total Phosphorus Summary Statistics	13
Table 3.	Total Nitrogen Summary Statistics	18
Table 4.	Chemical Oxygen Demand Summary Statistics	20
Table 5.	Biochemical Oxygen Demand Summary Statistics	23
Table 6.	Oil & Grease Summary Statistics	25
Table 7.	Total Organic Carbon Summary Statistics	27
Table 8.	pH Summary Statistics	29
Table 9.	Turbidity Summary Statistics	31
Table 10.	Total Lead Summary Statistics	36
Table 11.	Total Zinc Summary Statistics	39
Table 12.	Total Copper Summary Statistics	43
Table 13.	Total Cadmium Summary Statistics	46
Table 14.	Total Chromium Summary Statistics	49
Table 15.	Total Nickel Summary Statistics	50
Table 16.	Total Iron Summary Statistics	52
Table 17.	Total Manganese Summary Statistics	54
Table 18.	Total Mercury Summary Statistics	55
Table 19.	Total Coliforms Summary Statistics	57
Table 20.	Fecal Coliforms Summary Statistics	58
Table 21.	Fecal Streptococci Summary Statistics	61
Table 22.	Coefficients of Determination	62

URBAN STORMWATER QUALITY:

A STATISTICAL OVERVIEW

1. INTRODUCTION

Pollution from urban catchments is a major problem in waterways. In Australia, this problem is compounded by extensive city and suburban development and by the large variability of flows. Urban runoff can contain nutrients at similar concentrations to treated sewage, as well as significant levels of suspended solids, heavy metals, and pathogens. Some pollutants have long-term adverse effects on urban waterways and the habitat of aquatic life, while others can cause acute or chronic toxicity. More accurate assessment of pollutant loads entering urban waterways is needed for improving urban stormwater design and management.

To help address this need, this report presents a statistical overview of observed urban runoff water quality. The study was carried out by analysing the results of many investigations reported in the literature. The objective was to assess the broad scale behaviour of runoff quality, and its interactions with land use and other catchment characteristics.

1.1 Report Layout

Following this Introduction, Section 2 describes the data management system developed to handle the wide range of experimental design and level of detail encountered in the urban runoff quality literature.

Section 3 presents information about each single water quality parameter in turn. Information includes a brief description of the contaminant, its likely sources and possible effects, the statistical distribution of concentration data, means and standard deviations for each land use with sufficient data, and significant relationships with catchment characteristics.

Section 4 looks at correlations between the concentrations of the various water quality parameters.

Section 5 provides a general discussion of land use effects, catchment characteristics, and explanatory power.

Section 6 summarises the conclusions.

The Appendices include an abbreviated tabulation of data, descriptive statistics of every water quality parameter for each land use observed, and a table of regression coefficients for significant relationships between concentration and catchment characteristics.

2. DATA MANAGEMENT

The data collated for this study have been obtained from reports of many investigations noted in the literature. These reports vary greatly in scope, structure, objectives, and detail, ranging from isolated measurements taken more than 40 years ago (Akerlindh 1950; Palmer 1950; Wilkinson 1954; Shigorin 1956), to the large centrally coordinated Nationwide Urban Runoff Program implemented by the United States Environmental Protection Agency (Athayde et al. 1983; Torno 1984). Urban and partly urban catchments were the main target of the literature search, but non-urban catchments used for comparison or control have also been retained.

One record in the data file is the average behaviour of one experimental condition at one site in the source document. Thus, for example, the six roofs of Thomas & Greene (1993) at Armidale in Australia form six records, and the separately tabulated results for summer and autumn storms at Viborg in Denmark (Hvitved-Jacobsen et al. 1987) form two records. This means that separate records are not always fully independent. Altogether, 508 data records have been collated, although not all parameters are available at all sites.

The majority of data points represent the mean event mean concentration of several runoff events, although other measures of central tendency have also been used. The 81 NURP sites use median event mean concentrations, and geometric means have also very occasionally been used. For the purposes of this overview, they are all accepted as locally appropriate measures of central tendency. The event mean concentration of a single event is the total load of a specified contaminant during the event divided by the total flow volume of the event.

The number of events measured, the number of samples taken, and the measurement techniques used vary widely between studies. It follows that the accuracy of the average behaviour data used here must also vary widely. But due to the difficulty and subjectivity of assessing the relative accuracy, no attempt has been made to apply weighting factors to the data.

2.1 Water Quality Variables

Twenty-one water quality parameters have been analysed. They are suspended solids, total phosphorus, total nitrogen, chemical oxygen demand, biochemical oxygen demand, oil & grease, total organic carbon, pH, turbidity, lead, zinc, copper, cadmium, chromium, nickel, iron, manganese, mercury, total coliforms, fecal coliforms, and fecal streptococci. All parameters are recorded as concentrations in milligrams per litre except for pH (pH units), turbidity (NTU), and the three microbiological measures (organisms per 100 mL).

2.2 Catchment Characteristics

Catchment information collated includes catchment area (ha), impervious (%), urban (%), residential (%), industrial (%), commercial (%), institutional (%), urban open space (%), other urban (%), agricultural (%), forest (%), other rural (%), population density (people/ha), roads (%), traffic density (vehicles/day), roofs (%), affected by Mt. St. Helens eruption (yes/no), and mean annual rainfall (mm).

2.3 Data File Structure

Because of the wide range of sources and levels of detail, a major challenge of the present study has been to prepare the available data in a manner which is internally consistent, yet captures as much information as possible from the original reports. Land use is sometimes expressed in numeric form in the source document, but often a qualitative verbal description is given (e.g. '...a predominantly residential catchment...', '...an urban road...', etc.). The descriptive information almost always permits allocation into one of three classes - high, medium, or low - and so a three-class structure has been adopted for the land use categories. The cut points for allocating numeric percentages to the three classes are set at one third and two thirds of total catchment area.

The final data structure and analysis protocol evolved from these practical considerations. Contaminant concentrations, catchment area, percent impervious, population density, traffic density, and mean annual rainfall are treated as continuous variables, since they are recorded in numeric form. The remainder are treated as grouping variables, since they can take only two or three distinct states.

The three-class structure for grouping variables has become an integral part of the analysis procedure. Thus we have a major data division into high urban, medium urban, and low urban catchments.

High urban is by far the largest group, since it was the main objective of the literature review and data collection program. It is subdivided into residential, industrial, commercial, and other high urban subgroups. Again the three-way structure applies. To be classed as residential, an urban catchment must comprise at least two thirds residential area (or be described as 'residential', 'substantially residential', or some similar expression), and similarly for the other subgroups. If no single urban use falls in the top third, or if no further breakdown is given, the catchment is classed as other high urban. The institutional and urban open space categories are too small to permit separate analysis, so they also are included as other high urban.

Medium urban is a very small group. Occasionally a large study has measured several catchments with a continuous gradation of urbanisation, but more commonly the land uses chosen are widely separated - high urban test catchments and low urban controls. Although basic statistics are presented, no further analysis has been carried out for the medium urban group. It is treated as a buffer to clearly separate the high urban and low urban groups.

Low urban is a group of intermediate size. Rural catchments were not a primary data collection objective, and those included are often control catchments set up as part of an urban study. It is subdivided into agricultural, forest, and other low urban subgroups, using the same three-way structure as previously. Agricultural use is not further subdivided into type of agriculture, due to the small sample size. Forest may include woodland and scrubland - the essential feature is lack of development rather than size of trees. The term 'low urban' is used rather than 'rural', to emphasise that under the adopted data structure this group could include up to 33% urban area (although in practice that is very rarely the case).

Catchment descriptors which measure actual surface use (roads, roofs) apply at a different scale from those which measure more general zonings (residential, agricultural, etc.), and both types may apply simultaneously. Residential roofs or high urban roads are both legitimate land use categories. Initial review of the data shows that the actual surface use has a far greater effect on runoff quality than the broader zoning. Therefore roads and roofs have been accorded major group status. They have been separated from the remaining records before the division into high, medium, and low urban use. The usual two-thirds criterion applies. Note that areas classed as roads may not all be actual running lanes - shoulders, median strips, and embankments may also be included.

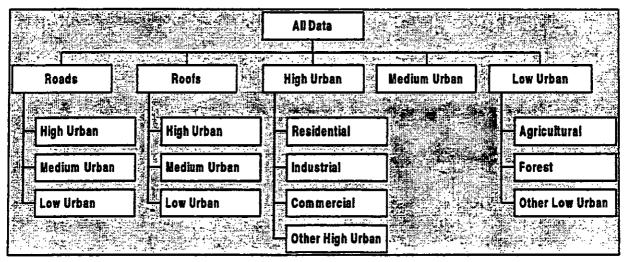


Figure 1. Land Use Groups

Thus in the final analysis there are five major land use groups, as shown in Figure 1:

- roads,
- roofs.
- high urban (excluding roads and roofs),
- · medium urban (excluding roads and roofs), and
- low urban (excluding roads and roofs).

Roads and roofs may be further subdivided, depending on sample size. High urban and low urban are subdivided as described above. Medium urban is not subdivided, and takes little part in the detailed analysis. The data used in this study are tabulated in an abbreviated form in Appendix A.

Mean annual rainfall has been obtained either from the source document, from other studies at the same location, or from a data file of worldwide rainfall data. Mean annual runoff has not been used as it is rarely quoted in the published reports.

3. STATISTICS OF SINGLE PARAMETERS

In this section the statistics of each single water quality parameter are presented in turn. General results and trends are discussed in the following sections. The land use groups used are those described in Section 2, although groups may be combined where sample sizes are small. Issues that apply to many water quality parameters are discussed more fully under the first parameter (suspended solids), and treated more briefly for the other parameters.

Two main measures are used here to assess the relationship between two parameters. The **coefficient of determination** (R²) measures the fraction of the variation in one parameter which can be explained by the other. A value of zero means they are completely independent, while a value of one means that either parameter can be completely determined from the other. The **statistical significance** assesses the probability that an apparent relationship is really present, or whether it could have occurred by chance in our data sample. It depends on the sample size as well as the association between the sample points. A confidence level of 95% is very commonly used as a standard. Throughout this report, 'significant' means statistically significant at the 95% confidence level, and 'highly significant' means statistically significant at the 99% confidence level. A change or trend which requires discussion but is not statistically significant is referred to as a tendency or an apparent trend.

The reliability and usefulness of any statistic depend in part on the sample size, with smaller samples giving less reliable results. Because of this, subgroups with less than four sample points have been omitted from the bar graphs and summary tables in this section. This is a very low cutoff, suitable for a general overview but too small for many statistical tests. The sample size is shown on both bar graphs and summary tables, and should be noted before drawing conclusions from the information presented.

3.1 Suspended Solids

Suspended solids is the material that can be removed from a water sample by filtration under standard conditions. Nonfiltrable residue is an older term of identical meaning. The greatest mass of suspended solids in urban runoff typically occurs in the 1-50 μ m particle size range (Collins & Ridgway 1980; Ellis et al. 1981; Roberts et al. 1988) although much larger particles may be observed. The largest sizes are likely to be under-recorded, due to limitations in sampling techniques (Ellis 1979).

Deposition of suspended solids can block pipes, change flow conditions in open channels, and disrupt the habitat of aquatic invertebrates and fish. Turbidity associated with fine suspended solids will reduce light penetration. Equally important is the association between suspended solids and many other contaminants, including hydrocarbons, heavy metals, and phosphorus (Walesh 1986; Preul & Ruszkowski 1987; Urbonas 1991). Suspended solids has frequently been used as a generic or indicator measure of urban runoff pollution.

Sources of suspended solids include wet and dry atmospheric deposition, wear of roads and vehicles, construction and demolition operations, vegetation, and erosion of pervious areas by wind and water (Pitt 1979; James & Shivalingaiah 1986; Sriananthakumar & Codner 1992).

Altogether 362 records were obtained for suspended solids, including 247 records from high urban areas other than roads and roofs. The observed range extends from 2.8 mg/L for a rural stream in Minnesota to 14,541 mg/L from urban cobblestone streets in Leningrad in 1948-50.

Suspended solids concentrations from all land uses closely follow the log-normal distribution (Figure 2). Log-normality of runoff quality data has frequently been noted (Mance & Harman 1978; Torno 1984; Driscoll 1986; Marsalek 1991). Even so, the goodness of fit is striking, particularly since the points plotted are raw data, not residuals after processing. It will be seen subsequently that the log-normal distribution provides a moderate to very good fit to all quality parameters tested except pH. Because of this, all graphs (except for pH) are presented on a log scale, and T-tests between land use groups are carried out in the log domain. Summary statistics for each water quality parameter are shown in both transformed and untransformed coordinates.

Basic statistics describing the concentrations of suspended solids from various land uses (in log coordinates) are tabulated in Appendix B, while means and standard deviations are shown in the form of bar graphs in Figure 3.

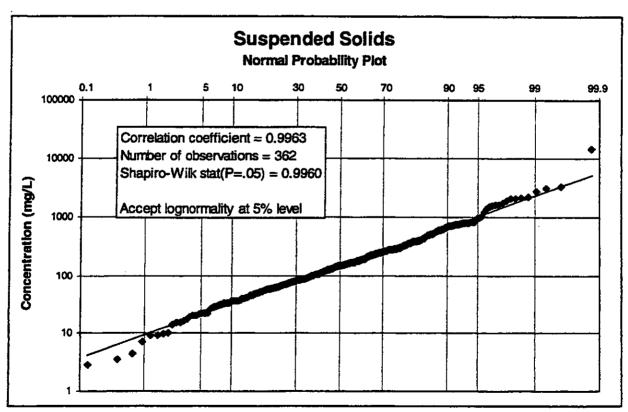


Figure 2. Suspended Solids Normal Probability Plot

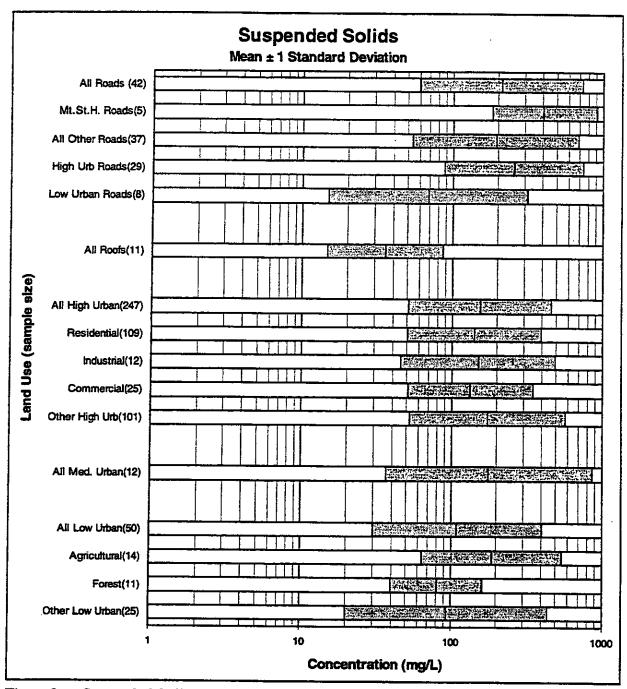


Figure 3. Suspended Solids Concentration vs Land Use

3.1.1 Roads

Within the roads group of land uses, the five sites affected by the eruption of Mt. St. Helens produced the highest suspended solids concentrations. Deposition of up to 20 mm of volcanic ash was recorded at these sites (Asplund et al. 1982). This highlights the unpredictable effect of unusual and unexpected events, but for most practical purposes these records can be treated as outliers. Accordingly, they have been excluded from the remainder of the analysis.

Concentrations from all other roads (37 records) are significantly related to mean annual rainfall. The higher the annual rainfall, the lower the concentration of suspended solids (Figure 4). The size of the effect is substantial - increasing the annual rainfall by 500 mm approximately halves the most likely concentration of suspended solids. As a result, the average loads from two sites of different annual rainfall differ by much less than would otherwise be expected. This seems to suggest some measure of source limitation for suspended solids.

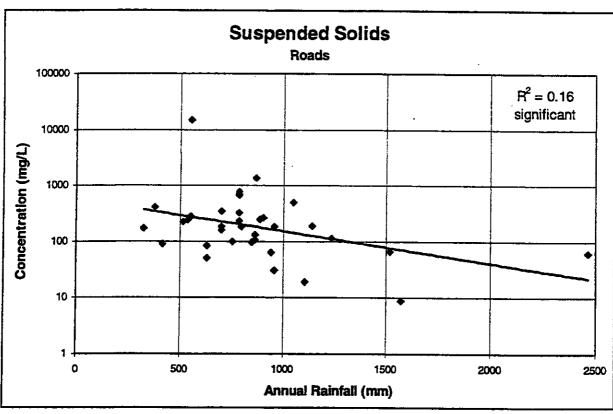


Figure 4. Suspended Solids Concentration (Roads) vs Annual Rainfall

Note that comparing two locations with different annual rainfall is not the same as comparing two rainfall events at the one site. In the first case, the vegetation, soils, drainage pattern, and other physical factors have developed over a long period under that rainfall regime. As will be seen, lower contaminant concentrations from impervious areas under higher annual rainfall is a very common result. In the second case, all the long term site-dependent factors remain the same, but short term factors such as time of year, antecedent dry period, and rainfall intensity will differ. In this case, higher rainfall intensity typically leads to somewhat higher suspended solids concentrations, giving much higher total loads (Driver & Troutman 1989).

No significant relationships were found between suspended solids concentration and percent impervious or vehicles per day.

On the bar graphs in Figure 3, the average concentration from low urban roads is considerably lower than that from high urban roads, and a T-test (in the log domain) shows that the difference is highly significant. But if the fitted rainfall effect is subtracted from the data, the difference between high urban and low urban roads is much reduced, and is only just significant. So we can say that the concentrations of suspended solids from low urban roads are lower than from high urban roads, but partly because the urban areas in this sample tend to be located away from the areas of highest rainfall.

3.1.2 Roofs

The roofs group cannot be further subdivided for suspended solids, due to the small sample size (11 records). As it happens, all the roof samples are from high urban roofs, yet the mean concentration is only one seventh of that from high urban roads, and one quarter of that from all high urban sites excluding roads and roofs. Both differences are statistically highly significant. All roof concentrations fall in the lower half of the observed range from all land uses.

Of all the sources of suspended solids, only wet and dry atmospheric deposition will apply equally to roofs and to surfaces at lower elevation. All other sources are likely to be at their

maximum below roof level. Dry weather redistribution by wind also tends to concentrate dense particulate contaminants at lower elevations. This elevation effect explains the lower concentrations of suspended solids in roof runoff, and also contributes to the higher concentrations in road runoff. It seems likely that urban roads are major contributors to pollutant load not just because of their vehicular traffic, but also because they are usually low. The same effect may be a factor contributing to the lower contamination of rural roads compared with urban roads. Urban roads are often at the lowest elevation in a local area, whereas rural roads generally are not.

3.1.3 High Urban

The high urban group excluding roads and roofs (247 records) has been subdivided into residential, industrial, commercial, and other high urban subgroups. There are no significant differences between any of the subgroups, despite the large sample size (Figure 3). It seems that the similarities between the various subgroups of high urban land use far outweigh the differences, when analysed in this way. The NURP study (Athayde et al. 1983) reached the same conclusion. In their analysis of 81 US catchments, which comprise about one fifth of the data used here, they found no significant differences for suspended solids between residential, mixed, commercial, industrial, or open/non-urban sites.

Suspended solids concentrations from high urban areas are significantly correlated with mean annual rainfall (Figure 5), and the relationship is very similar to that described above for the roads group. Increasing the annual rainfall by 500 mm more than halves the most likely concentration of suspended solids. No significant relationships were detected between suspended solids concentration and catchment area, percent impervious, or population density.

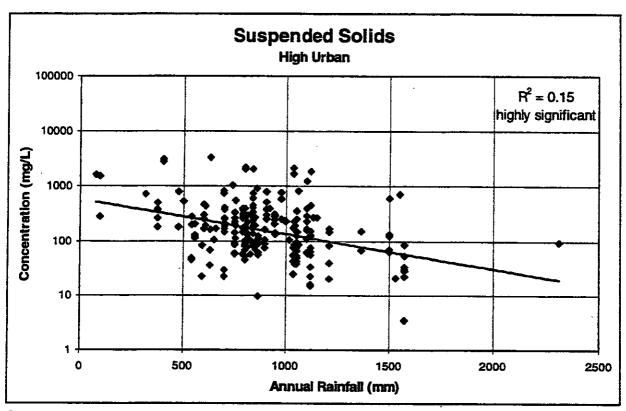


Figure 5. Suspended Solids Concentration (High Urban) vs Annual Rainfall

3.1.4 Medium Urban

The medium urban group (12 records) is characterised by small sample size and high variability. No further division into subgroups is possible, since percent urban lies between 34% and

66%, so that no single land use can achieve the 67% needed for inclusion in any subgroup. Because of this, the medium urban group is not analysed in any detail.

3.1.5 Low Urban

The low urban group (50 records) is subdivided into agricultural, forest, and other low urban subgroups. Mean suspended solids concentration from the agricultural subgroup is more than twice that from the forest subgroup, which is a statistically significant difference. The other low urban subgroup exhibits a very wide range of values, presumably because this group contains records for which the detailed land use is not stated (but could be all forest, or all agricultural) as well as sites known to be of mixed land use.

All three low urban subgroups (and the group as a whole) show a tendency for concentration to increase with increasing annual rainfall, in contrast to the roads and high urban groups (Figure 6). Although not significantly different from zero, the gradient is significantly different from that of the roads and high urban groups, suggesting that different processes are involved. It is likely that erosion is an important process in the low urban (mainly pervious) areas, while some degree of source limitation applies in the roads and high urban (mainly impervious) areas. The higher concentration from agricultural areas, compared with undisturbed forest areas, is compatible with the erosion hypothesis.

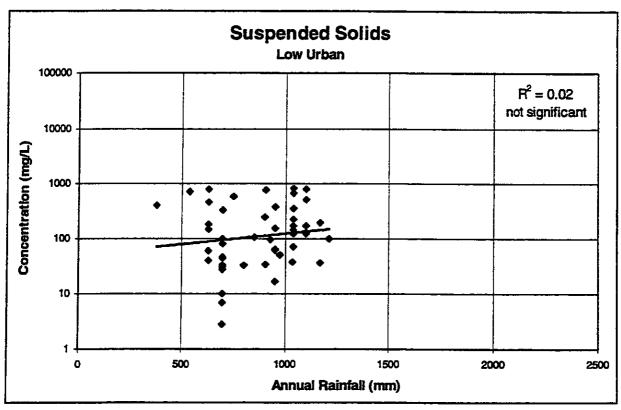


Figure 6. Suspended Solids Concentration (Low Urban) vs Annual Rainfall

No significant relationships have been found between low urban suspended solids concentrations and percent impervious, population density, or catchment area, using this analysis approach.

3.1.6 Summary

Within an urban area, roofs produce the lowest concentrations of suspended solids on average, followed by high urban sites excluding roads and roofs, followed by high urban roads, which give the highest average concentrations. Low urban roads give lower concentrations than high urban roads. This gradation appears to be related to relative local elevation.

Suspended solids concentration in runoff increases as forested land changes to agricultural land, and also as forest land becomes urbanised. High urban and agricultural sites produce similar concentrations, on average, although the underlying processes appear to be different. Suspended solids concentrations from roads and high urban areas (both largely impervious) decrease on average as annual rainfall increases, while concentrations from low urban areas do not.

No significant differences were found between the four subgroups of high urban land use - residential, industrial, commercial, and other high urban.

Summary statistics are listed in Table 1 for the distinct land use subgroups identified. Two subgroups are treated as distinct if they belong to different major groups, if their means are significantly different (in the log domain), or if other identified processes appear to be different. The arithmetic means in log coordinates correspond to the geometric means in untransformed coordinates. And since the data are log-normally distributed, the geometric means tend to be similar to the medians.

Table 1.	Suspended Solids	Summary Statistics

Subgroup	Sample	mple Log Transformed Data		Untransformed Data (mg/L)		
	size	Mean	Std. Dev.	Arith. Mean	Geo. Mean	Median
High urban roads	29	2.41	0.46	779	257	232
Low urban roads	8	1.84	0.66	229	69	64
Roofs	11	1.55	0.38	47	35	41
High urban	247	2.19	0.48	294	155	152
Agricultural	14	2.27	0.47	311	186	133
Forest	11	1.90	0.30	99	79	71

3.2 Total Phosphorus

Total phosphorus in runoff is the sum of dissolved and particulate phosphorus. Each of these fractions can be subdivided into reactive, acid-hydrolysable, and organically bound phosphorus, according to its chemical availability. Reactive phosphorus is readily available, while organic phosphorus is released only by powerful oxidising agents (Eaton et al. 1995). It is a common but not universal practice to quote concentrations in terms of the mass of phosphorus only, rather than the mass of the compound in which it occurs. Orthophosphate, in particular, may be expressed in either form, and great care is required in the interpretation of published data. This report uses concentrations of phosphorus only.

Phosphorus is an essential nutrient, and may be the limiting nutrient at a site. Where phosphorus is limiting, an increase may cause excessive and unbalanced growth of plants and algae leading to oxygen depletion (eutrophication). Sources of phosphorus include atmospheric deposition (Nicholls & Cox 1978; Jassby et al. 1994), tree leaves (Kluesener & Lee 1974; Dorney 1986; Allison & Chiew 1997), domestic and agricultural fertilisers, industrial wastes, detergents and lubricants (Makepeace et al. 1995).

A total of 306 records were obtained, including 206 from high urban areas excluding roads and roofs. The observed range runs from 0.01 mg/L for an urban catchment at Shrimptons Creek in Sydney to 4.7 mg/L for the agricultural Pequea 3 catchment in Virginia.

Total phosphorus concentrations from all land uses closely follow the log-normal distribution (Figure 7). Basic statistics describing the concentrations of total phosphorus from various land

uses (in log coordinates) are tabulated in Appendix B, while means and standard deviations are shown in the form of bar graphs in Figure 8.

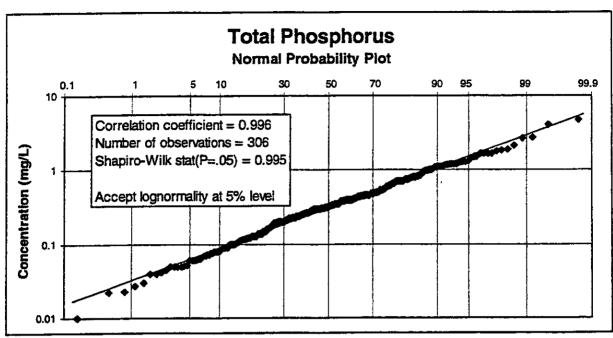


Figure 7. Total Phosphorus Normal Probability Plot

3.2.1 Roads

No significant differences in total phosphorus concentration were detected between the three subgroups (high urban, low urban, and Mt. St. Helens) of the roads group. Even so, the Mt. St. Helens subgroup has been excluded from further analysis, so that all quality parameters are treated consistently.

For the remaining roads, there is a highly significant relationship with traffic density (Figure 9). Interestingly, the relationship is negative - higher traffic density is associated with lower total phosphorus concentration. Perhaps there tends to be more vegetation per square metre of road area bordering lower volume routes, which supplies phosphorus to the ground surface in the form of leaves and other plant litter. Mechanical breakup of plant debris by traffic movement will lead to the rapid release of phosphorus (Cowen & Lee 1973).

No significant relationship with mean annual rainfall was detected in this group.

3.2.2 Roofs

The roofs group for total phosphorus is small (6 records), and as all roofs are classed as high urban, no further separation is possible. The mean concentration from roofs is about half of that from roads and about one third of that from high urban areas excluding roads and roofs. All roof concentrations fall in the lower half of the observed range from all land uses.

3.2.3 High Urban

In the high urban group (206 records), mean total phosphorus concentration from residential areas is significantly higher than from all other high urban areas combined, although the actual increase in mean event mean concentration is quite small. No significant differences were found between industrial, commercial, and other high urban uses. Again, this appears to be consistent with the results of the NURP study, as shown graphically by Athayde et al. (1983).

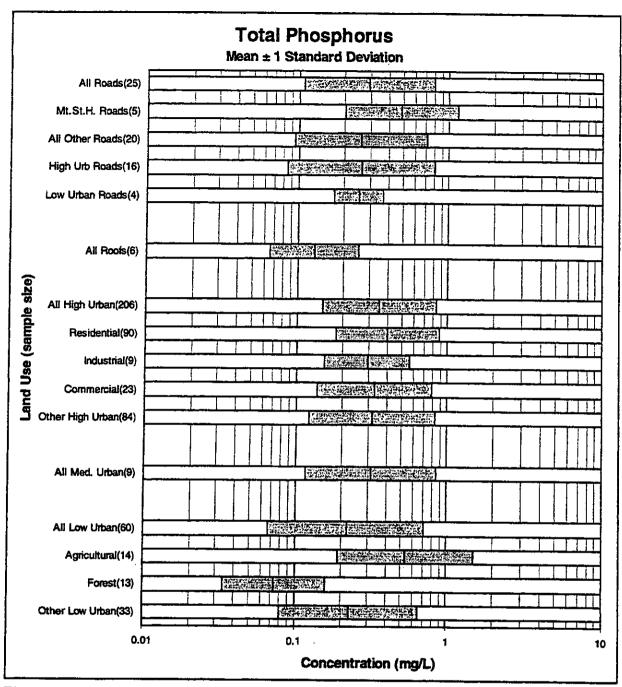


Figure 8. Total Phosphorus Concentration vs Land Use

Higher total phosphorus concentrations from residential areas could simply reflect the use of fertilisers on gardens. Alternatively, residential areas may provide the optimum mix of source material (vegetation) and impervious area (which allows fast runoff and minimises adsorption of phosphorus onto fixed soil particles).

No significant relationships were found between total phosphorus concentration and mean annual rainfall, catchment area, impervious percent, or population density.

3.2.4 Low Urban

In the low urban group (60 records), the difference between forested and agricultural catchments is very marked (Figure 8). Mean total phosphorus concentration from forest areas is only one seventh of that from agricultural areas, and less than one quarter of that from the high urban group. Both differences are highly significant. High concentrations from agricultural areas are presumably related to erosion and fertiliser use. Agricultural concentrations are

not significantly higher than residential concentrations. They are, however, significantly higher than concentrations from other high urban areas.

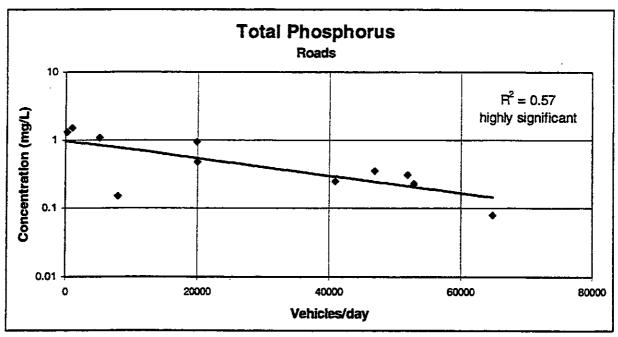


Figure 9. Total Phosphorus Concentration (Roads) vs Traffic Density

3.2.5 Summary

In an urban area, roofs produce the lowest concentrations of total phosphorus on average, and residential areas produce the highest concentrations. All other urban land uses, including roads, fall between these limits. On roads, total phosphorus concentrations decrease as traffic density increases. These effects may be related to the presence of vegetation as a source of phosphorus.

Total phosphorus concentrations from the forest subgroup are significantly lower than those from the agricultural subgroup and the high urban group. Agricultural concentrations are significantly higher than all urban subgroups except residential.

No strong relationships between total phosphorus concentrations and annual rainfall were detected for any group or subgroup analysed.

Summary statistics are listed in Table 2 for the distinct land use subgroups identified.

Table 2. Total Phosphorus Summary Statistics

Subgroup	Sample	ple Log Transformed Data		Untransformed Data (mg/L		(mg/L)
	size	Mean	Std. Dev.	Arith. Mean	Geo. Mean	Median
Roads	20	-0.59	0.44	0.42	0.26	0.24
Roofs	6	-0.89	0.29	0.15	0.13	0.14
Residential	90	-0.40	0.34	0.56	0.40	0.39
Non-resid. high urban	116	-0.50	0.40	0.46	0.32	0.36
Agricultural	14	-0.27	0.45	0.90	0.54	0.51
Forest	13	-1.14	0.34	0.095	0.072	0.070

3.3 Total Nitrogen

Total nitrogen in runoff is the sum of several forms. Organic nitrogen plus ammonia nitrogen comprise total kjeldahl nitrogen. Nitrite plus nitrate comprise oxidised nitrogen. Total kjeldahl nitrogen and oxidised nitrogen together make up total nitrogen. Nitrogen can be converted between these forms, and also nitrogen gas, by chemical and biological action (Eaton et al. 1995). It is a common but not universal practice to quote concentrations in terms of the mass of nitrogen only, rather than the mass of the compound in which it occurs. Nitrite and nitrate, in particular, may be expressed in either form. This report uses concentrations of nitrogen only.

Nitrogen is an essential nutrient, and may be the limiting nutrient at a site. In such cases, increased nitrogen levels may stimulate further growth and lead to eutrophication of the water body. Nitrite and nitrate in drinking water contribute to the illness known as methemoglobinemia, or blue baby syndrome.

Sources of nitrogen in storm water include fertilisers, industrial cleaning operations, feed lots, animal droppings, combustion of fossil fuels (Makepeace et al. 1995), windblown pollen, spores, bacteria, and dust (McKee 1962), fallen leaves, and other plant debris. Rainfall is consistently the major source of nitrogen in urban runoff (Duncan 1995), and inorganic nitrogen concentrations in rainfall often exceed a threshold level for algal blooms (Weibel et al. 1966).

Altogether 212 records were obtained for total nitrogen, including 139 records from high urban areas excluding roads and roofs. The observed range extends from 0.194 mg/L for the largely forested Tieton River in Washington state to 56.6 mg/L for an urban road in Washington state affected by the eruption of Mt. St. Helens.

Total nitrogen concentrations from all land uses approximately follow the log-normal distribution (Figure 10). Although log-normality is rejected by the rigorous Shapiro-Wilk test, the fit still appears to be reasonable. Since consistency of method is important when comparing behaviour, total nitrogen concentrations are analysed in the log domain the same as the other quality parameters. Basic statistics describing the concentrations of total nitrogen from various land uses (in log coordinates) are tabulated in Appendix B, while means and standard deviations are shown in the form of bar graphs in Figure 11.

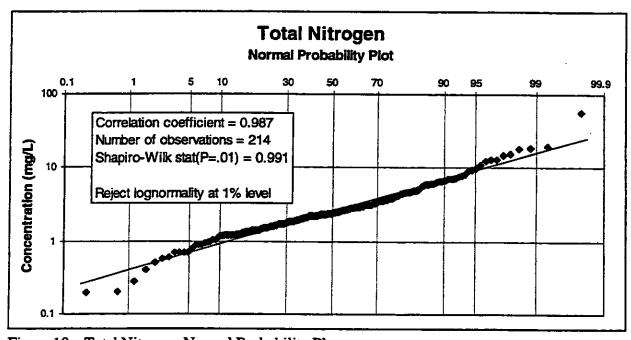


Figure 10. Total Nitrogen Normal Probability Plot

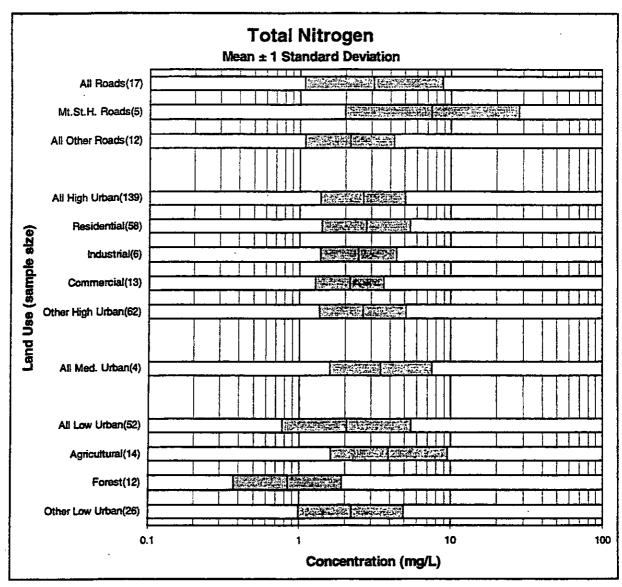


Figure 11. Total Nitrogen Concentration vs Land Use

3.3.1 Roads

There are no significant differences in total nitrogen concentrations between subgroups in the roads group of land uses. The high mean and standard deviation for the Mt. St. Helens subgroup in Figure 11 are due to a single very high reading. Either including or excluding this point, the mean is not significantly different from that for all other roads. With the Mt. St. Helens subgroup excluded, the all other roads subgroup contains 11 high urban roads and only one low urban road, so it can not be usefully subdivided any further.

A tendency for total nitrogen concentration from roads to decrease with increasing annual rainfall is not significant (Figure 12), but the regression line is almost identical to that described below for high urban land use excluding roads and roofs.

3.3.2 Roofs

With only two records, both from the same urban area, roofs data for total nitrogen carry little statistical weight. Informally, we can note that both concentrations fall in the upper half of the observed range from all land uses. For suspended solids, all eleven roof runoff concentrations fall in the lower half of the observed range.

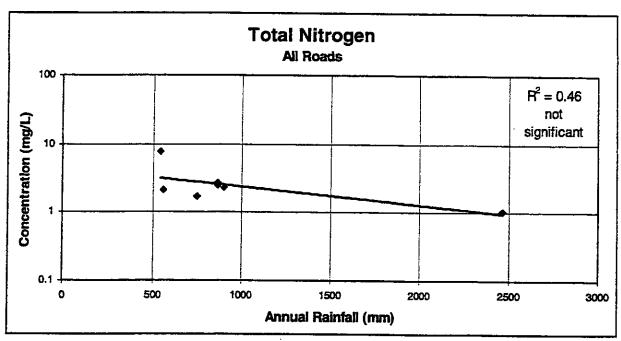


Figure 12. Total Nitrogen Concentration (Roads) vs Annual Rainfall

3.3.3 High Urban

There are no significant differences in total nitrogen concentrations between any subgroups of the high urban group (139 records). The NURP study (Athayde et al. 1983) did not analyse total nitrogen, but for total kjeldahl nitrogen they found somewhat higher median concentrations from residential sites than from mixed or commercial sites. The median concentration in high urban runoff (2.5 mg/L) is not much higher than the typical concentration in urban rainfall (1 to 2 mg/L) quoted by Duncan (1995). The nitrogen in rainfall may be brought in from distant sources, or it may be derived locally and stripped from the atmosphere close to ground level. Either way, the rainfall itself (not just the runoff it generates) evidently plays a major role in mobilising nitrogen in urban runoff.

Total nitrogen concentrations from high urban areas are significantly correlated with mean annual rainfall (Figure 13). The regression line is almost identical to that for the roads group. Increasing the annual rainfall by 500 mm reduces the most likely concentration by about 30%. Total nitrogen is also correlated with population density (Figure 14), with higher population density giving higher total nitrogen concentration. Unfortunately the sample size is much reduced, since population information is less readily available than rainfall data.

No significant relationships were detected in the high urban group between total nitrogen concentration and catchment area or percent impervious.

3.3.4 Low Urban

The low urban group comprises 52 records, with all three subgroups well represented. Mean total nitrogen concentration from the forest subgroup is about one fifth of that from the agricultural subgroup, and about one third of that from the high urban group. Both differences are highly significant. Mean agricultural and high urban concentrations are not significantly different.

The low urban group shows a negative correlation with annual rainfall - the higher the rainfall the lower the concentration of total nitrogen (Figure 15). The relationship is highly significant, although arguably not very robust, since it depends largely on a small number of records with high rainfall. This behaviour is similar to that of the roads and high urban groups, but quite different from that of suspended solids in the low urban situation. Perhaps the relationship

with annual rainfall reflects an atmospheric process, rather than a runoff process, since it is so similar for all land uses.

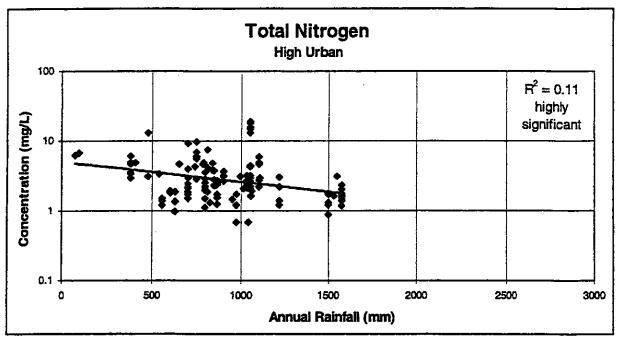


Figure 13. Total Nitrogen Concentration (High Urban) vs Annual Rainfall

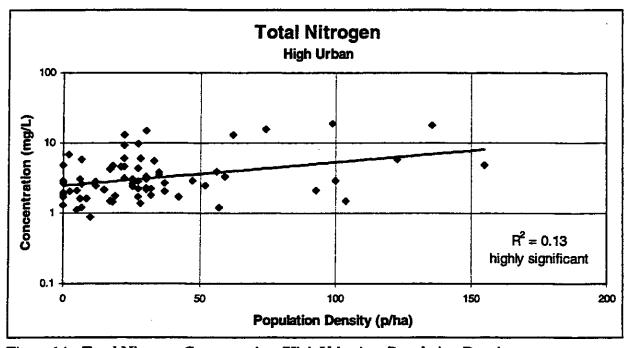


Figure 14. Total Nitrogen Concentration (High Urban) vs Population Density

3.3.5 Summary

No significant differences in total nitrogen concentrations were found between the three land use groups with adequate sample size for analysis - roads, high urban, and low urban. Nor were any significant differences found between the four subgroups of high urban land use - residential, industrial, commercial, and other high urban.

Total nitrogen concentrations from the forest subgroup are significantly lower than those from the agricultural subgroup and the high urban group.

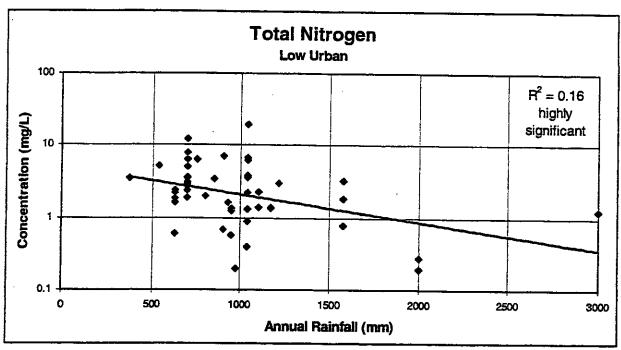


Figure 15. Total Nitrogen Concentration (Low Urban) vs Annual Rainfall

Total nitrogen concentrations from roads, high urban areas, and low urban areas all decrease on average as annual rainfall increases. The relationships are strikingly similar for all three land uses.

Summary statistics are listed in Table 3 for the distinct land use subgroups identified.

Table 3. Total Nitrogen Summary Statistics

Subgroup	Sample	e Log Transformed Data		Sample Log Transformed Data Unt		Untrans	nsformed Data (mg/L)	
	size	Mean	Std. Dev.	Arith. Mean	Geo. Mean	Median		
Roads	12	0.33	, 0.30	2.7	2.1	2.2		
High urban	139	0.42	0.28	3.4	2.6	2.5		
Agricultural	14	0.59	0.39	5.3	3.9	4.4		
Forest	12	-0.08	0.36	1.1	0.83	0.95		

3.4 Chemical Oxygen Demand

Chemical oxygen demand, or COD, is a measure of the oxygen uptake of organic matter in a sample under the action of a strong chemical oxidant. For samples from a given source, COD can be related empirically to BOD, organic carbon, or organic matter (Eaton et al. 1995).

A total of 224 records were obtained for COD, including 165 records from high urban areas other than roads and roofs. The observed range extends from 5 mg/L for an urban catchment in Zhuhai, China, to 1031 mg/L for a commercial area in Burnaby, Canada.

COD concentrations from all land uses follow the log-normal distribution (Figure 16). Basic statistics describing the concentrations of COD from various land uses (in log coordinates) are tabulated in Appendix B, while means and standard deviations are shown in the form of bar graphs in Figure 17.

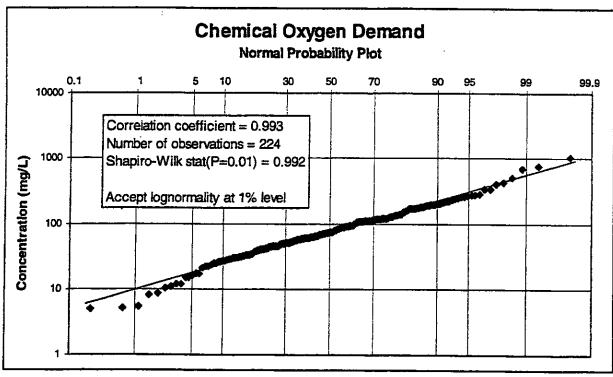


Figure 16. Chemical Oxygen Demand Normal Probability Plot

3.4.1 Roads

There are no significant differences in COD concentrations between the three roads subgroups. As usual, the Mt. St. Helens subgroup is excluded from analysis, to provide consistency across all water quality parameters. The mean COD concentration from both high urban and low urban roads is almost identical to that from all high urban areas excluding roads and roofs. There is a significant negative relationship between COD from roads and mean annual rainfall - higher annual rainfall is associated with lower mean concentration (Figure 18).

3.4.2 High Urban

The mean COD concentration from industrial areas is about twice that from all other high urban areas and all roads (Figure 17). However the industrial sample size is small, which decreases the importance of the observation. There are no other significant differences in the high urban or roads groups. The characteristic negative relationship with mean annual rainfall is again present (Figure 19), and is virtually identical to the relationship found in the roads group. No relationships were found with either percent impervious or population density.

3.4.3 Low Urban

The mean COD concentration from all low urban areas is about half of that from all high urban areas and roads, which is a highly significant difference, although no significant differences were found between the subgroups of low urban land use. The relationship with annual rainfall, while not itself significant, is very similar in gradient to the significant relationships found in the roads and high urban groups.

3.4.4 Summary

Elevated COD concentration in runoff appears to be associated with all kinds of roads and high urban land use, with a further increase in the case of industrial use. The lack of any difference between high urban and low urban roads suggests that a major source must be associated with the roads themselves, rather than the surrounding areas.

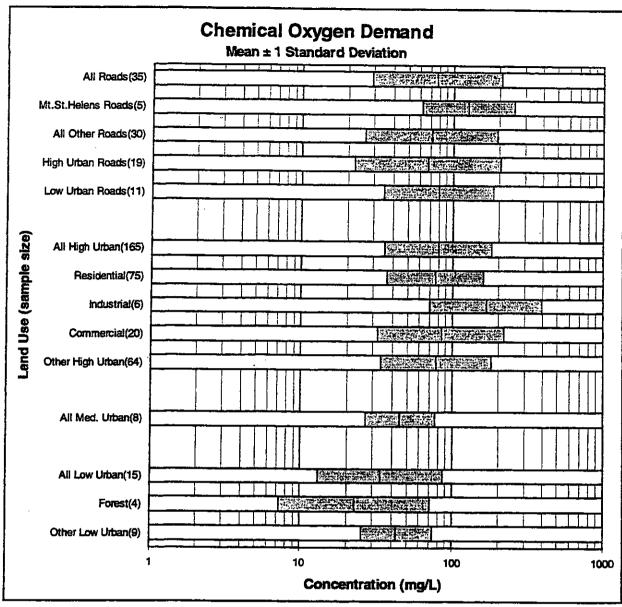


Figure 17. Chemical Oxygen Demand vs Land Use

Summary statistics are listed in Table 4 for the distinct land use subgroups identified.

Table 4. Chemical Oxygen Demand Summary Statistics

Subgroup	Sample	Log Transformed Data		Untransformed Data (mg/L)		
	size	Mean	Std. Dev.	Arith. Mean	Geo. Mean	Median
Roads	30	1.86	0.44	109	72	99
Industrial	6	2.22	0.38	223	166	178
Non-ind. high urban	159	1.89	0.35	108	78	73
Low urban	15	1.53	0.41	47	34	36

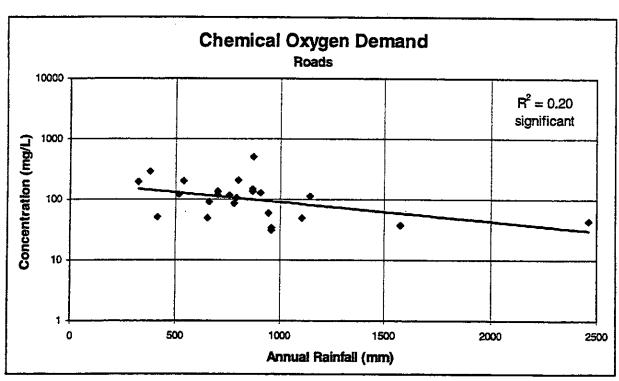


Figure 18. Chemical Oxygen Demand (Roads) vs Annual Rainfall

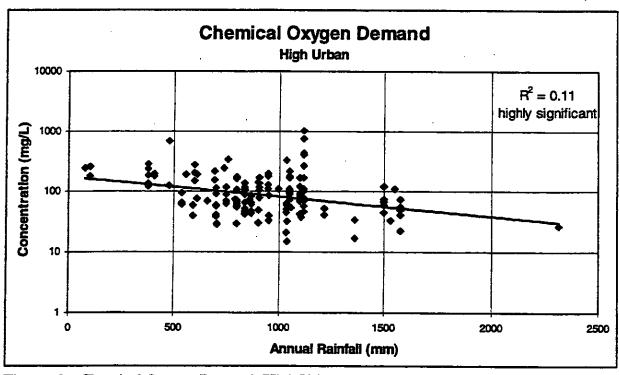


Figure 19. Chemical Oxygen Demand (High Urban) vs Annual Rainfall

3.5 Biochemical Oxygen Demand

Biochemical oxygen demand, or BOD, is an empirical measure of the relative oxygen requirements of polluted waters. A five day test is standard, although other durations have also been used. The oxygen demand arises from the biochemical degradation of organic material, the oxidation of inorganic material such as sulphides and ferrous iron, and possibly the oxidation of reduced forms of nitrogen (Eaton et al. 1995).

A total of 154 records were obtained for BOD, including 127 records from high urban areas other than roads and roofs. The observed range extends from 1.1 mg/L for a forested catch-

ment near Asheville, North Carolina, to 146 mg/L for an urban catchment in Detroit, Michigan.

BOD concentrations from all land uses approximately follow the log-normal distribution (Figure 20). Basic statistics describing the concentrations of BOD from various land uses (in log coordinates) are tabulated in Appendix B, while means and standard deviations are shown in the form of bar graphs in Figure 21.

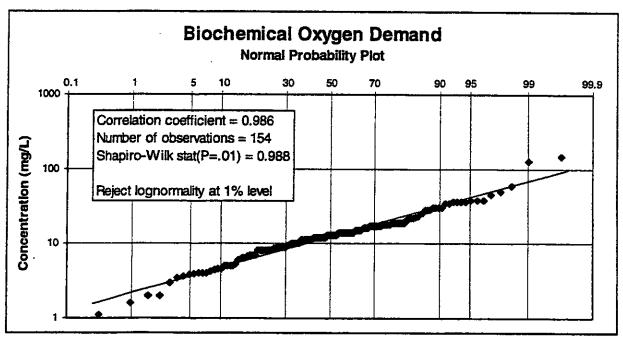


Figure 20. Biochemical Oxygen Demand Normal Probability Plot

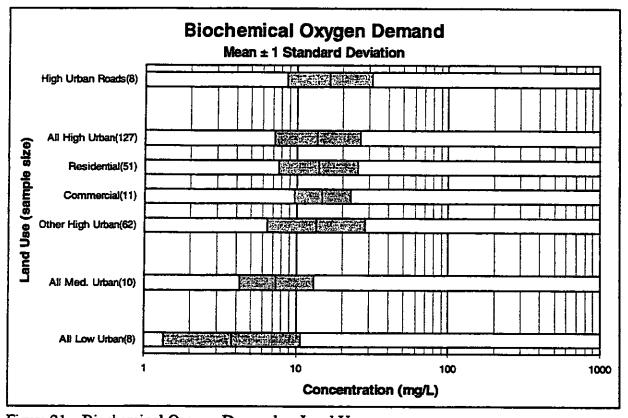


Figure 21. Biochemical Oxygen Demand vs Land Use

3.5.1 High Urban

There are no significant differences between any subgroups of high urban land use excluding roads and roofs. A relationship between BOD concentration and population density is highly significant, but arguably not very robust, as it depends to a large extent on just three readings (Figure 22). Higher population density is associated with higher BOD. No significant relationships were found between BOD and mean annual rainfall or percent impervious.

3.5.2 Summary

The mean BOD concentration from high urban roads is similar to that from all high urban areas excluding roads and roofs. The mean BOD from all low urban areas is less than one third of that from high urban areas or roads, which is a highly significant difference. Medium urban areas, which in this case have a larger sample size than low urban areas, occupy an intermediate position.

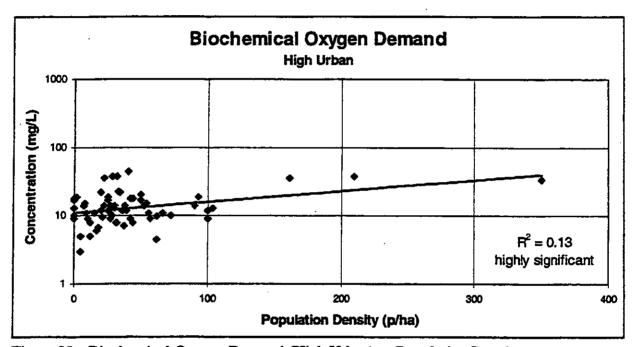


Figure 22. Biochemical Oxygen Demand (High Urban) vs Population Density

Mean BOD concentration increases with increasing urbanisation, although the type of urbanisation (land use subgroup) does not appear to be important. Associated with this is an increase in BOD with increasing population density.

Summary statistics are listed in Table 5 for the distinct land use subgroups identified.

Table 5.	Biochemical	Oxygen	Demand	Summary	Statistics
F	 				

Subgroup	Sample	ole Log Transformed Data		data Untransformed Data (n		(mg/L)
	size	Mean	Std. Dev.	Arith. Mean	Geo. Mean	Median
High urban roads	8	1.22	0.28	20	17	16
High urban	127	1.14	- 0.28	18	14	14
Low urban	8	0.58	0.45	6.2	3.8	3.0

3.6 Oil & Grease

Oil & grease is a composite of possibly thousands of organic chemicals with different properties and toxicities (Makepeace et al. 1995). It is defined as any material soluble in an organic extracting solvent, but no solvent is completely selective for oils and greases only, and four different solvents have been preferred over the period covered by the collated data (Eaton et al. 1995). Oil & grease concentrations should therefore be treated as indicative measures, rather than analytically exact determinations.

Sources of oil & grease include food processing and preparation, operation and maintenance of vehicles and machinery, and natural compounds leached from vegetation and plant litter.

A total of 41 records were obtained for oil & grease, including 33 records from high urban areas other than roads and roofs. The observed range extends from 0.5 mg/L for a forested catchment near Asheville, North Carolina, to 200 mg/L for motorway runoff in London, England.

Oil & grease concentrations from all land uses closely follow the log-normal distribution (Figure 23). Basic statistics describing the concentrations of oil & grease from various land uses (in log coordinates) are tabulated in Appendix B, while means and standard deviations are shown in the form of bar graphs in Figure 24.

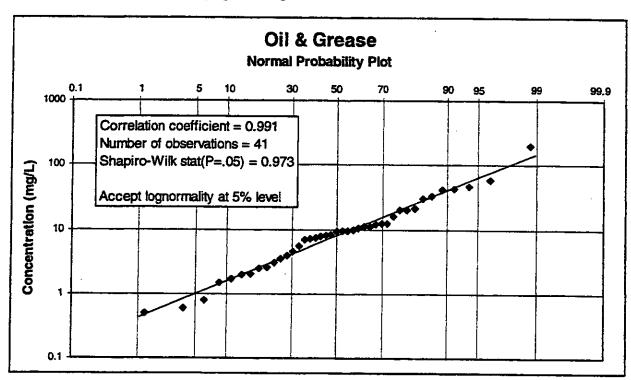


Figure 23. Oil & Grease Normal Probability Plot

3.6.1 Roads

With only two high urban roads and three low urban roads, the sample is too small for formal comparisons to be useful. It can be noted, however, that the two high urban roads produced the two highest oil & grease concentrations in the data set, and hence had the highest mean of any group or subgroup. This may be related to higher traffic density and lower speeds in built up areas, rather than to any direct effect of the surrounding land use.

3.6.2 High Urban

No significant concentration differences were found between the subgroups of high urban land use, or between all high urban land use and all roads taken as a single group. Nor were any

significant relationships found between oil & grease concentration and mean annual rainfall or percent impervious. This does not mean that the relationships are definitely absent. It means only that we could not detect them with confidence in this sample of data. Significant effects become increasingly difficult to detect as sample sizes become smaller. Because of this, the lack of a significant effect is not necessarily noted in the text.

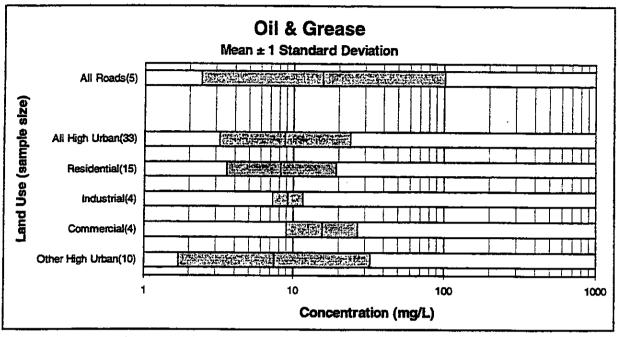


Figure 24. Oil & Grease Concentration vs Land Use

3.6.3 Low Urban

As with the roads group, there are too few data in the low urban and medium urban categories for formal comparisons. But again an apparent effect can be informally noted, since the two low urban sites account for the two lowest oil & grease concentrations in the data set.

3.6.4 Summary

Statistical analysis of oil & grease concentrations is hampered by lack of data in all groups other than high urban. Even so, there is an apparent trend from low urban (low concentration) through high urban to high urban roads (high concentration). Given the known sources and likely pathways of this contaminant, the apparent trend probably indicates a real effect rather than a chance occurrence in the data.

Summary statistics are listed in Table 6 for the distinct land use subgroups identified.

Table 6. Oil & Grease Summary Statistics

Subgroup	Sample	Log Transformed Data		Untransformed Data (mg/L)		
	size	Mean	Std. Dev.	Arith. Mean	Geo. Mean	Median
Roads	5	1.19	0.82	55	15	7.0
High urban	33	0.94	0.44	13	8.7	9.5

3.7 Total Organic Carbon

Total organic carbon is a measure of all carbon atoms covalently bonded in organic molecules (Eaton et al. 1995). To a large extent it reflects the level of natural organic substances, or humic materials, in the water sample (World Health Organization 1984).

A total of 29 records were obtained for total organic carbon, including 23 records from high urban areas excluding roads and roofs. The observed range extends from 4.2 mg/L from a tributary of the Stamford Canal in Singapore, to 110 mg/L from urban streets in San Jose.

Total organic carbon concentrations from all land uses follow the log-normal distribution (Figure 25). Basic statistics describing the concentrations of total organic carbon from various land uses (in log coordinates) are tabulated in Appendix B, while means and standard deviations are shown as bar graphs in Figure 26.

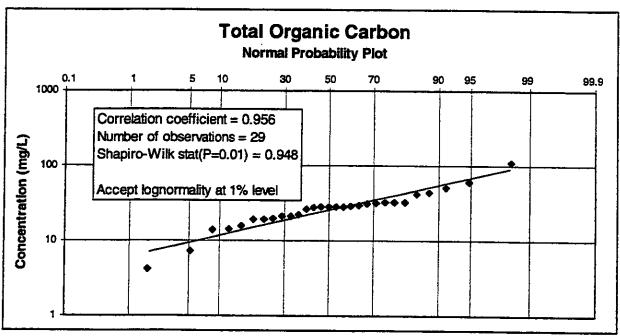


Figure 25. Total Organic Carbon Normal Probability Plot

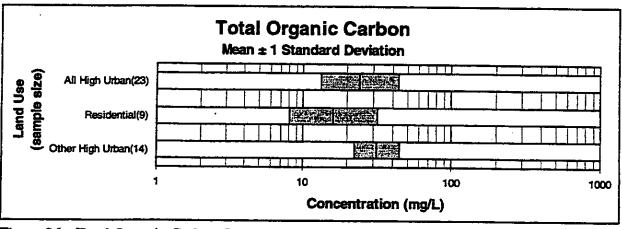


Figure 26. Total Organic Carbon Concentration vs Land Use

3.7.1 Roads

Although the sample is too small to carry much weight, we can note informally that the three recorded concentrations from roads all fall in the upper half of the observed range from all land uses.

3.7.2 High Urban

In the high urban group, total organic carbon concentration from residential areas is typically about half of that from other high urban areas (Figure 26), which is a significant difference. There is a highly significant relationship between total organic carbon concentration and mean annual rainfall, with higher rainfall giving lower concentrations (Figure 27). Increasing the annual rainfall by 500 mm almost halves the most likely concentration of total organic carbon.

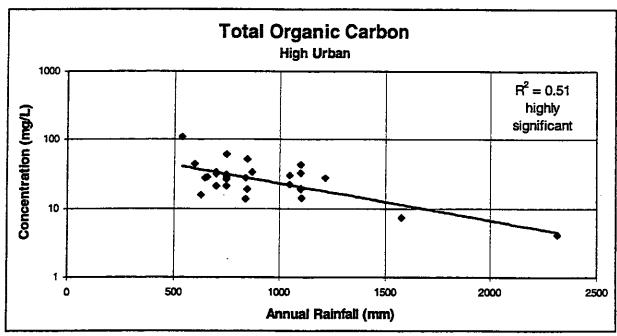


Figure 27. Total Organic Carbon Concentration (High Urban) vs Annual Rainfall

3.7.3 Summary

Summary statistics are listed in Table 7 for the distinct land use subgroups identified.

Subgroup	Sample	Log Transformed Data		Untransformed Data (mg/L)		
	size	Mean	Std. Dev.	Arith. Mean	Geo. Mean	Median
Residential	9	1.20	0.30	19	16	19
Other high urban	14	1.50	0.15	33	32	30

Table 7. Total Organic Carbon Summary Statistics

3.8 pH

The pH of a solution is a measure of hydrogen ion activity, which in very dilute solution is approximately the same as hydrogen ion concentration. The number quoted is actually the negative base 10 logarithm of the hydrogen ion activity. A pH of 7.0 is neutral at normal temperatures, lower pH is acidic, and higher pH is basic (Eaton et al. 1995). The pH of most raw water sources lies within the range 6.5 to 8.5 (World Health Organization 1984).

The importance of pH in water quality lies mainly in its effect on other quality parameters, and on chemical reactions in solution. Its effect on solubility of a wide range of metallic contaminants is of particular significance.

A total of 76 records were obtained for pH, including 48 records from high urban areas other than roads and roofs. The observed range extends from 4.1 for a tarred sawmill roof in Washington state to 8.3 for an urban drain in Sydney, Australia.

The pH of runoff from all land uses other than roofs closely follows the normal distribution (Figure 28). It is the only quality parameter in this study which is not approximately lognormal. Interestingly, pH is itself a log-based index. Basic statistics describing the pH of runoff from various land uses are tabulated in Appendix B, while means and standard deviations are shown as bar graphs in Figure 29.

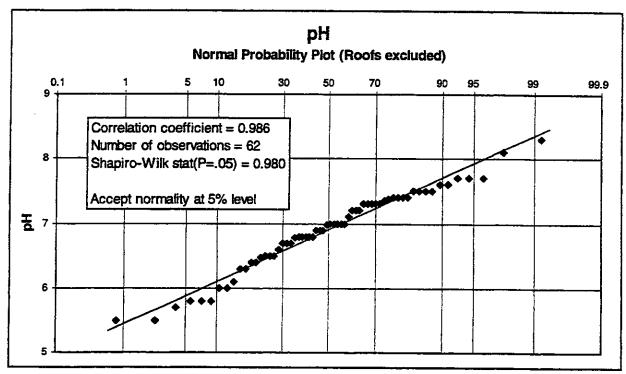


Figure 28. pH Normal Probability Plot

3.8.1 Roofs

The mean pH of roof runoff is more than a full unit lower (i.e. more acidic) than that of any other land use in this study. The lowest readings of all (average pH 4.2) come from three tarred paper or tarred felt roofs.

3.8.2 High Urban

There are no significant differences in pH between any of the subgroups of high urban land use. Nor, for that matter, between roads or low urban land use and any subgroup of high urban. All of these land uses exhibit mean pH close to the neutral value of seven. No significant relationship was found between pH and mean annual rainfall in the high urban group.

3.8.3 Summary

The only notable effect of land use is for roof runoff, which has a mean pH significantly lower than that of any other land use, but somewhat higher than that of rainfall. The pH of rainfall (sampled before striking a roof or the ground) averaged 5.0 at the 42 sites in this study where it was measured. The effect is evidently related to the type of roofing material, since tarred roofs show distinctive behaviour, but an effect of contact time may also be present. Roof catchments in this study are typically much smaller than ground level catchments, and this is reflected in correspondingly shorter times of concentration.

Summary statistics are listed in Table 8 for the distinct land use subgroups identified.

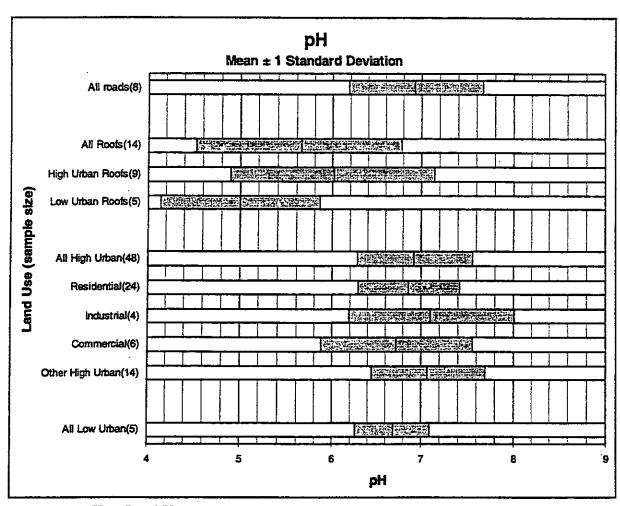


Figure 29. pH vs Land Use

Table 8. pH Summary Statistics

Subgroup	Sample	le Untransformed Data (mg/L)				
	size	Mean	Std. Dev.	Median		
Roads	8	6.9	0.7	7.0		
Roofs	14	5.7	1.1	5.9		
High urban	48	6.9	0.6	7.0		
Low urban	5	6.7	0.4	6.7		

3.9 Turbidity

Turbidity is the cloudiness in water caused by the presence of suspended matter such as clay, silt, colloidal organic particles, plankton, and other microscopic organisms (World Health Organization 1984). It affects light penetration into a water body, and interferes with disinfection in situations where water treatment is required.

Turbidity is measured by the scattering or extinguishment of light passing through the sample. Measurements using the nephelometric method are based on light scattering, and are expressed in Nephelometric Turbidity Units (NTU). Formazin Turbidity Units (FTU) is an alternative term of identical meaning. This is the current method of choice. Measurements using older methods based on light extinguishment are expressed in Jackson Turbidity Units (JTU). The two scales are broadly similar but not identical (World Health Organization 1984).

Altogether 27 records were obtained for turbidity, including 16 records from high urban areas other than roads and roofs. The observed range extends from 0.7 units from a rural concrete tile roof in Armidale, Australia, to 1129 units from an urbanising catchment in Lincoln, Nebraska.

Turbidity from all land uses closely follows the log-normal distribution (Figure 30). Basic statistics describing turbidity from various land uses (in log coordinates) are tabulated in Appendix B, while means and standard deviations are shown in the form of bar graphs in Figure 31. The only land use groups with useful sample sizes are roofs (mostly high urban) and high urban areas excluding roads and roofs (mostly residential).

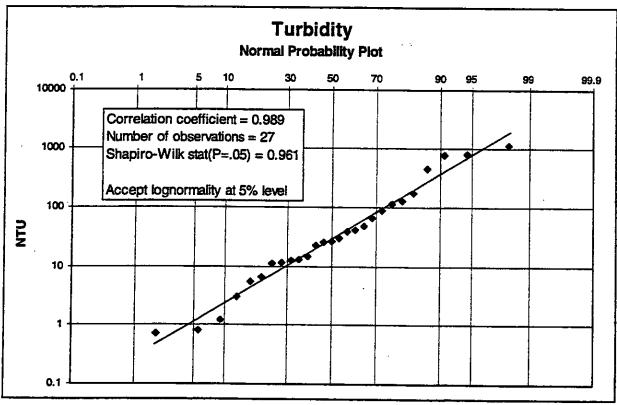


Figure 30. Turbidity Normal Probability Plot

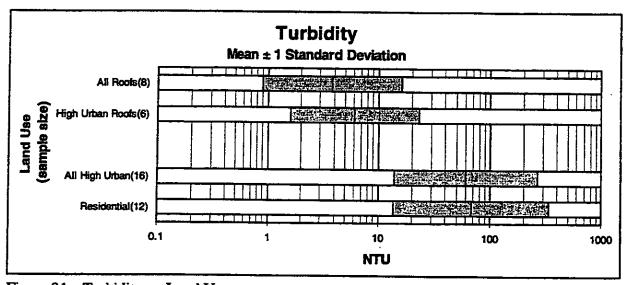


Figure 31. Turbidity vs Land Use

3.9.1 Summary

The mean turbidity of roof runoff is less than one tenth that of runoff from other urban land uses, which is a highly significant difference. This suggests that the main sources of turbidity are concentrated at ground level, rather than in the atmosphere. No relationship between turbidity levels and annual rainfall is evident in this sample.

Summary statistics are listed in Table 9 for the distinct land use subgroups identified.

Table 9. Turbidity Summary Statistics

Subgroup	Sample	Log Transformed Data		Untransformed Data (mg/L)		
	size	Mean	Std. Dev.	Arith. Mean	Geo. Mean	Median
Roofs	8	0.58	0.63	9.1	3.8	4.2
High urban	16	1.78	0.64	172	60	37

3.10 Total Lead

Lead is a cumulative general metabolic poison which in animals becomes concentrated mainly in the bones (World Health Organization 1984). Lead bioaccumulates in animals, plants, and bacteria, and has been identified as an important contaminant of concern in stormwater research. Environmental and drinking water guidelines are frequently exceeded in urban stormwater. Lead in stormwater runoff is mostly associated with suspended solids (Makepeace et al. 1995). The most commonly measured components of total lead are dissolved and particulate lead, although speciation schemes that distinguish the bioavailable and potentially toxic forms have also been used to specify the components of total lead (Morrison et al. 1984; Flores-Rodriguez et al. 1993).

The main source of lead in urban runoff is from petrol additives. Other sources include tyres (Makepeace et al. 1995), industrial emissions, lead water pipes and soldered joints (Eaton et al. 1995), plastic pipes and guttering (Good 1993), paints, lead roofs, and flashing.

A total of 275 records were obtained for total lead, including 181 records from high urban areas other than roads and roofs. The observed range extends from 0.0005 mg/L for two rural roofs near Armidale, Australia, to 2.74 mg/L from a residential area in Baltimore, Maryland.

With all data treated as a single group, the fit to the log-normal distribution is not good (Figure 32). When the four major land use groups are taken separately, roads, roofs, and low urban fit satisfactorily, while high urban exhibits several low outliers. Three of these outliers are from the same study (Soderlund & Lehtinen 1972). Comparison of Table 1 and Figure 7 in the source document suggests that the tabulated values may indeed be too low, probably by a factor of 1000 (i.e. misprinted unit). With these three outliers removed, the high urban land use group also fits the log-normal distribution (Figure 33).

Basic statistics describing the concentrations of total lead from various land uses (in log coordinates) are tabulated in Appendix B, while means and standard deviations are shown in the form of bar graphs in Figure 34.

3.10.1 Roads

There are no significant differences in lead concentrations between subgroups in the roads group of land uses. For consistency with the other quality parameters, the Mt. St. Helens group has been excluded from further analysis, although there is no trace of any difference in behaviour. Evidently the eruption neither produced lead, nor affected the availability of lead

from other sources. There is also no significant difference between high urban and low urban roads, despite a moderate sample size.

There is no significant correlation between lead concentration from roads and annual rainfall. A tendency for concentration to increase with percent impervious is not significant for roads (Figure 35), although the trendline is almost identical to a significant relationship for high urban land use (Figure 37), suggesting that similar processes are involved.

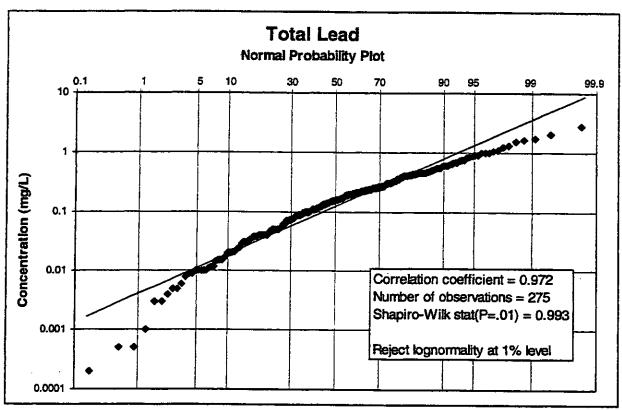


Figure 32. Total Lead Normal Probability Plot (All Data)

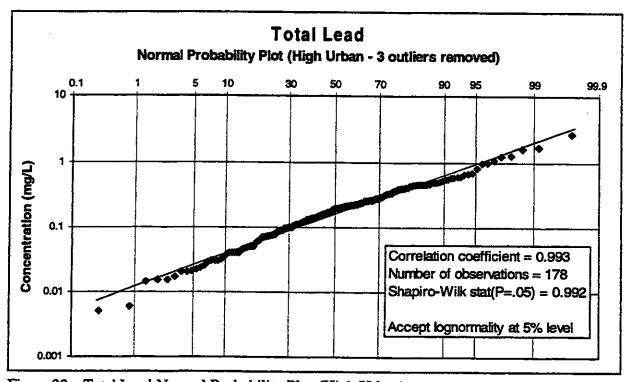


Figure 33. Total Lead Normal Probability Plot (High Urban)

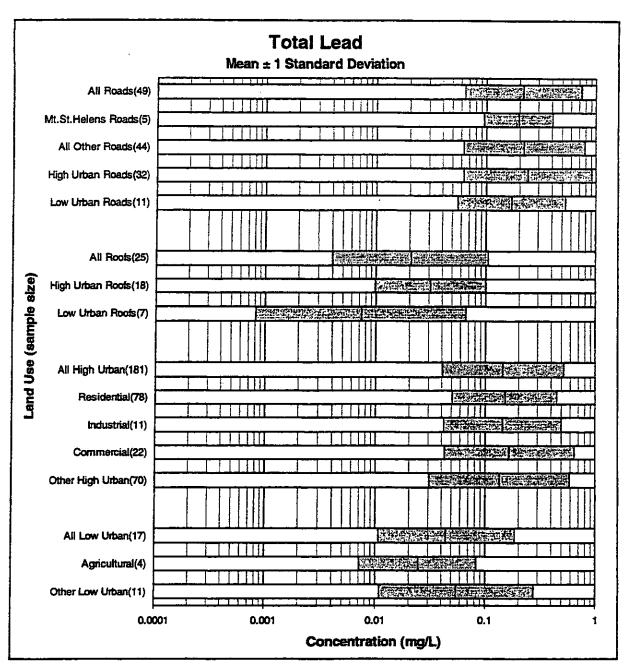


Figure 34. Total Lead Concentration vs Land Use

There is a highly significant relationship between lead concentration and traffic density in vehicles per day (Figure 36). Above about 100,000 vehicles per day all concentrations in this sample lie near 1 mg/L, at the upper end of the observed range. At lower traffic densities concentrations cover a wider range, typically between 0.01 and 1 mg/L. This relationship supports the claim that vehicle emissions are a major source of lead.

3.10.2 Roofs

Based on all available data, there is no significant difference in lead concentrations from high urban and low urban roofs. It is worth noting, however, that the wide standard deviation of the low urban roofs data in Figure 34 is caused by a single high reading attributed to plastic guttering (Good 1993). The data point is retained, as this is a valid source of lead in roof water, but otherwise the lead concentration from low urban roofs would have been almost an order of magnitude lower than that from high urban roofs.

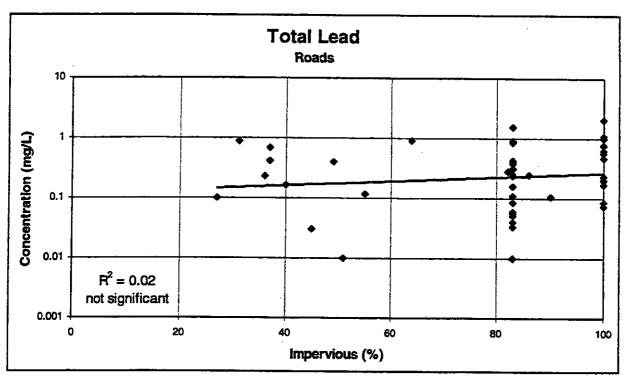


Figure 35. Total Lead Concentration (Roads) vs Percent Impervious

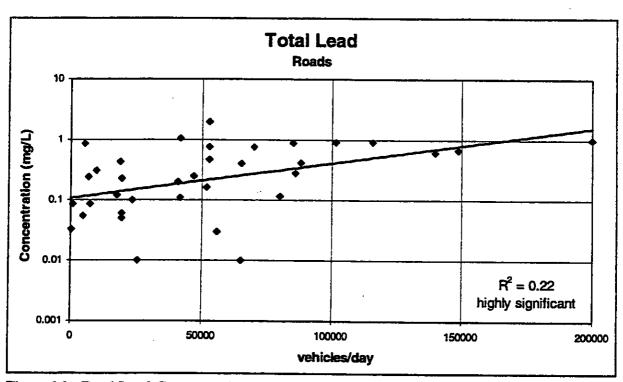


Figure 36. Total Lead Concentration (Roads) vs Traffic Density

The average lead concentration from roofs is about one tenth of that from all roads, and about one eighth of that from high urban areas, but is not significantly different from mean low urban concentrations. The processes that result in low suspended solids concentrations from roofs (Section 3.1.2) can be applied equally to lead, which is generated largely below roof level, and occurs mainly in particulate form. Dissolution of lead roofs and flashing, although possible, does not appear to be a major problem in practice.

3.10.3 High Urban

There are no significant differences in total lead concentrations between any subgroups of the high urban group (181 records). But treated as a single group, high urban lead concentrations are significantly higher than low urban concentrations. This agrees well with the NURP study (Athayde et al. 1983), which found that only the urban open and nonurban group was significantly different.

High urban lead concentrations correlate significantly with percent impervious (Figure 37), and the trendline is almost identical to that for roads. A higher percentage of impervious area is associated with higher lead concentrations in runoff. Presumably more impervious area equates to more vehicle-related source area, and relatively less dilution from non-source areas. No significant relationships were found between lead concentration and annual rainfall, catchment area, or population density.

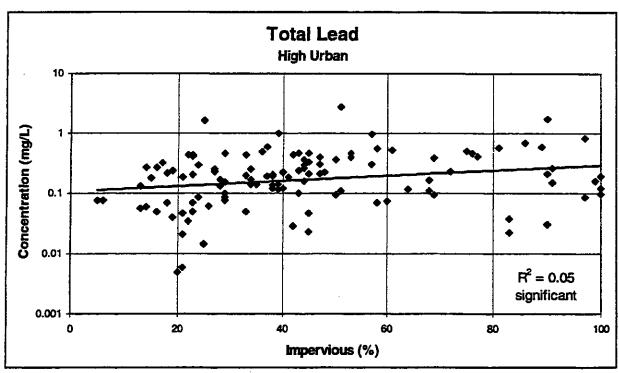


Figure 37. Total Lead Concentration (High Urban) vs Percent Impervious

3.10.4 Low Urban

Since the sample size for low urban land use is small (17 records), further division into subgroups is not very informative. The mean lead concentration from all low urban land use is significantly lower than that from all roads and all high urban, but is not significantly different from that for roofs. No significant relationship between concentration and annual rainfall was detected.

3.10.5 Summary

All the results described above are consistent with vehicles being the main source of lead in runoff. Roads give the highest concentrations, regardless of the urbanisation of the surrounding area, and higher vehicle densities give higher concentrations. The next highest group is high urban (with high road density), followed by low urban (with low road density), then by roofs (at an elevation which limits dry weather redistribution from road level).

Summary statistics are listed in Table 10 for the distinct land use subgroups identified.

Table 10. Total Lead Summary Statistics

Subgroup	Sample	Log Trans	formed Data	Untransformed Data (mg/L)			
	size	Mean	Std. Dev.	Arith. Mean	Geo. Mean	Median	
Roads	44	-0.66	0.55	0.41	0.22	0.25	
Roofs	25	-1.68	0.70	0.054	0.021	0.021	
High urban	181	-0.84	0.56	0.27	0.14	0.18	
Low urban	17	-1.35	0.62	0.11	0.045	0.040	

3.11 Total Zinc

Zinc is an essential and beneficial element in human growth (Eaton et al. 1995), and bioaccumulates easily in plants and animals. Zinc in stormwater runoff is mostly associated with dissolved solids, although it will adsorb to suspended sediments and colloidal particles. Environmental guideline levels are frequently exceeded (Makepeace et al. 1995). Water containing higher concentrations of zinc has an undesirable astringent taste, and may have an opalescent appearance (World Health Organization 1984). The most commonly measured components of total zinc are dissolved and particulate zinc, although speciation schemes that distinguish the bioavailable and potentially toxic forms have also been used to specify the components of total zinc (Morrison et al. 1984; Flores-Rodriguez et al. 1993).

Sources of zinc include wear from tyres and brake pads, possible combustion of lubricating oils, and corrosion of galvanised roofs, roadside fittings, pipes, and other metal objects (Makepeace et al. 1995).

A total of 235 records were obtained for total zinc, including 156 records from high urban areas other than roads and roofs. The observed range extends from 0.01 mg/L for two residential areas in Khayelitsha, South Africa, to 43.7 mg/L from a zinc sheet roof in Bayreuth, Germany.

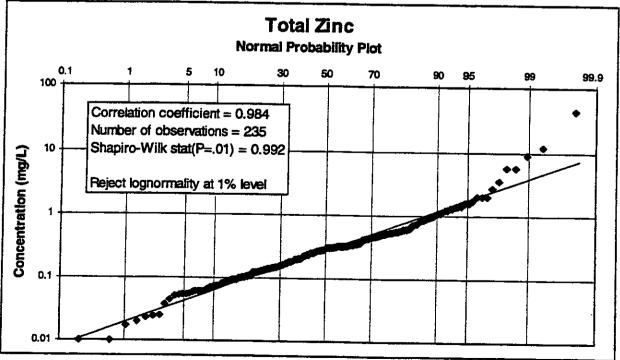


Figure 38. Total Zinc Normal Probability Plot

Total zinc concentrations from all land uses approximately follow the log-normal distribution, apart from a high tail caused by runoff from zinc or galvanised iron roofs (Figure 38). Basic statistics describing the concentrations of total zinc from various land uses (in log coordinates) are tabulated in Appendix B, while means and standard deviations are shown in the form of bar graphs in Figure 39.

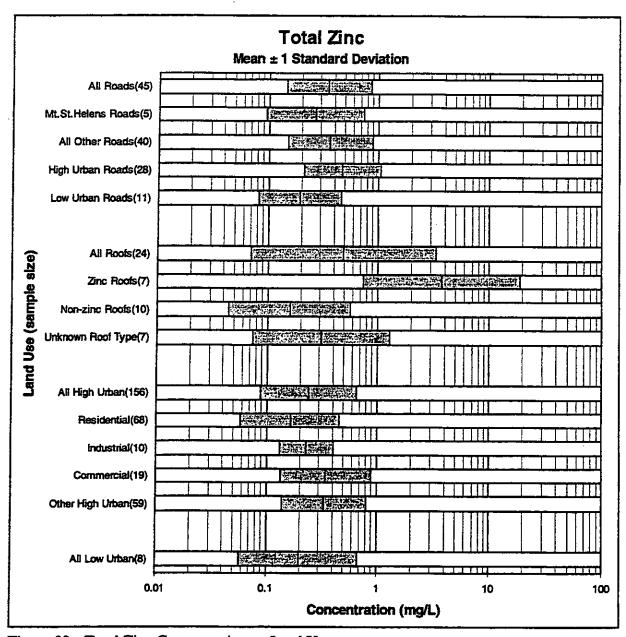


Figure 39. Total Zinc Concentration vs Land Use

3.11.1 Roads

The mean zinc concentration of runoff from high urban roads is more than twice that of low urban roads, and the difference is highly significant. This is most probably due to more galvanised roadside hardware in urban areas. The Mt. St. Helens group is not significantly different from unaffected roads, but the group has been excluded from further analysis for consistency with other quality parameters.

Provided the level of urbanisation is accounted for, there are no significant relationships between zinc concentration from roads and annual rainfall, percent impervious, or traffic density.

3.11.2 Roofs

By far the most important explanatory variable for zinc concentration from roofs is the roofing material - specifically whether the roof is made of zinc (galvanised iron or zinc sheet) or not. The mean zinc concentration from zinc roofs is by far the highest from any land use group, and is more than 20 times higher than that from non-zinc roofs. Not surprisingly, the difference is statistically highly significant (Figure 39). No other significant relationships were found for the roofs group.

3.11.3 High Urban

In the high urban group (156 records), total zinc concentration from residential areas is about half that from all other high urban areas combined, which is a significant difference. No significant differences were found between industrial, commercial, and other high urban uses. The lower concentrations from residential areas is presumably due to a lower density of galvanised roadside hardware, and a lower proportion of galvanised iron roofs, compared with industrial and commercial areas. This is broadly similar to the results of the NURP study (Athayde et al. 1983), which found combined industrial and commercial sites tended to give higher zinc concentrations.

Zinc concentrations from high urban areas decrease significantly as mean annual rainfall increases (Figure 40), and increase significantly as percent impervious increases (Figure 41). The relationship with impervious area is very similar to that for lead, and suggests an impervious source. This accords with the observation that galvanised iron roofs are the major source of zinc. The negative relationship with rainfall suggests that some degree of source limitation is present. In the case of zinc roofs and fittings, the source limitation presumably applies to the rate of dissolution, rather than the total mass of zinc present, since the total mass is large.

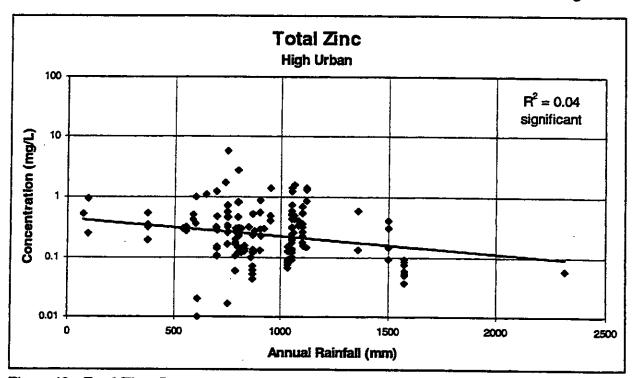


Figure 40. Total Zinc Concentration (High Urban) vs Annual Rainfall

3.11.4 Low Urban

Mean zinc concentration for low urban areas (excluding roads and roofs) is not significantly different from that for high urban areas (excluding roads and roofs). This provides an interesting contrast to the roads group, in which high urban roads produce much higher

concentrations than low urban roads. Because of the small sample size, the low urban group cannot usefully be subdivided further.

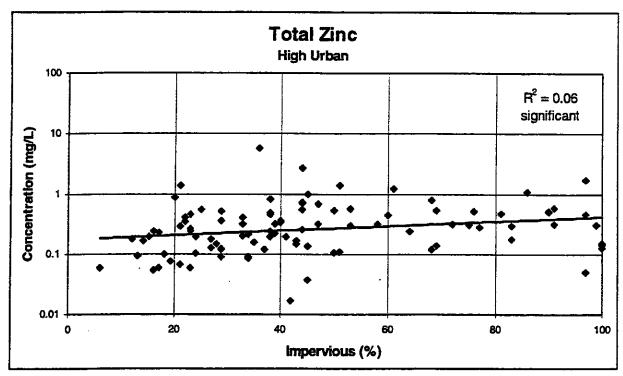


Figure 41. Total Zinc Concentration (High Urban) vs Percent Impervious

3.11.5 Summary

All the group results for zinc can be explained in terms of two principal sources - zinc roofs and high urban roads. The source of zinc on high urban roads is presumably galvanised roadside hardware such as railings, signposts, and corrugated metal drains. A tendency towards source limitation must be related to the rate of dissolution, rather than the total mass of zinc present. So a change in the acidity of rainfall would be likely to cause a change in the zinc concentration of urban runoff.

Summary statistics are listed in Table 11 for the distinct land use subgroups identified.

Table 11. Total Zinc Summary Statistics

Subgroup	Sample	Sample Log Transformed Da		Untransformed Data (mg/L)			
	size	Mean	Std. Dev.	Arith. Mean	Geo. Mean	Median	
High urban roads	28	-0.33	0.35	0.73	0.47	0.47	
Low urban roads	11	-0.71	0.38	0.26	0.20	0.27	
Zinc roofs	7	0.57	0.70	10.2	3.7	3.5	
Non-zinc roofs	10	-0.80	0.55	0.34	0.16	0.10	
Residential	68	-0.79	0.45	0.26	0.16	0.17	
Non-resid. high urban	88	-0.49	0.38	0.50	0.32	0.31	
Low urban	8	-0.71	0.54	0.35	0.20	0.20	

3.12 Total Copper

Copper is an essential element in human metabolism. Very large doses may lead to wide-spread irritation and damage, but this is rare in practice due to its powerful emetic action. Dissolved copper imparts a colour and an undesirable taste to drinking water (World Health Organization 1984). It is toxic to aquatic organisms, and is quickly accumulated in both plants and animals. Copper in stormwater runoff is mostly associated with dissolved solids and colloidal material, and environmental guidelines are frequently exceeded (Makepeace et al. 1995).

Sources of copper include wear of tyres and brake linings, possible combustion of lubricating oils, corrosion of roofs and water pipes, wear of moving parts in engines, industrial emissions, fungicides and pesticides (Makepeace et al. 1995). Copper salts are used in water supply systems to control biological growths in reservoirs and pipes (Eaton et al. 1995).

A total of 192 records were obtained for total copper, including 140 records from high urban areas other than roads and roofs. The observed range extends from 0.005 mg/L for a gravel and zinc sheet roof in Bayreuth, Germany, to 7.0 mg/L for an urban highway in Spokane, Washington state, affected by the eruption of Mt. St. Helens.

Total copper concentrations from all land uses approximately follow the log-normal distribution (Figure 42). The fit is much improved if the five points affected by Mt. St. Helens are excluded. Basic statistics describing the concentrations of total copper from various land uses (in log coordinates) are tabulated in Appendix B, while means and standard deviations are shown in the form of bar graphs in Figure 43.

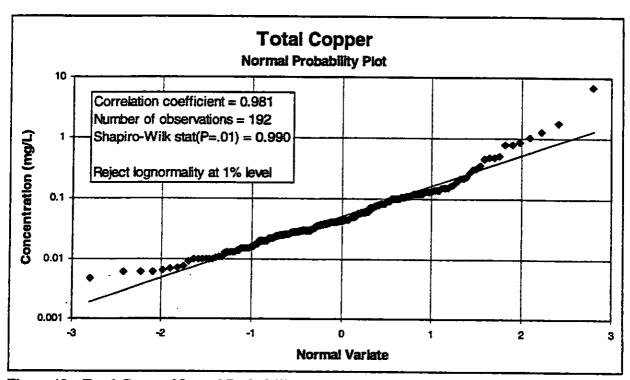


Figure 42. Total Copper Normal Probability Plot

3.12.1 Roads

Despite appearances on the bar graphs (Figure 43), there are no statistically significant differences in mean copper concentrations between the three roads subgroups. Even so, the Mt. St. Helens subgroup has been excluded from the analysis, to provide consistency with other water quality parameters.

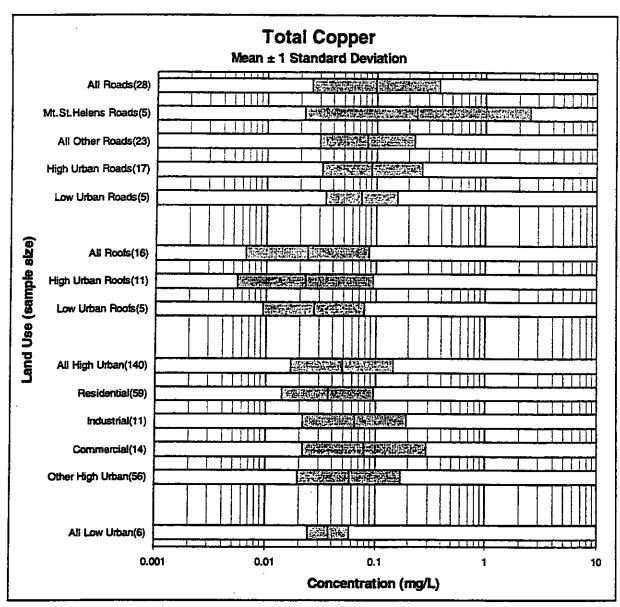


Figure 43. Total Copper Concentration vs Land Use

The relationship between copper concentration from roads and mean annual rainfall (Figure 44) is not significant, nor is it very robust as it depends largely on a single high rainfall reading. It is, however, very similar to the corresponding significant relationship for high urban land use (Figure 45), suggesting that similar processes may be involved. There is no trace of a relationship between copper concentrations from roads and either percent impervious or traffic density.

3.12.2 Roofs

There is no significant difference in mean copper concentration between high urban and low urban roofs, nor is there any relationship with mean annual rainfall. Mean copper concentration from all roofs is about one third that from all roads, and about half that from all high urban catchments excluding roads and roofs.

3.12.3 High Urban

The mean copper concentration from residential areas is just over half that from all other high urban areas, which is a significant difference. There are no significant differences between the industrial, commercial, and other high urban subgroups. Copper concentrations decrease

significantly as mean annual rainfall increases (Figure 45). A similar trend is apparent in the residential and non-residential subgroups taken separately, and also in the roads group.

These figures differ from the results of the NURP study (Athayde et al. 1983), which found no significant differences at all between residential, mixed, and industrial & commercial sites.

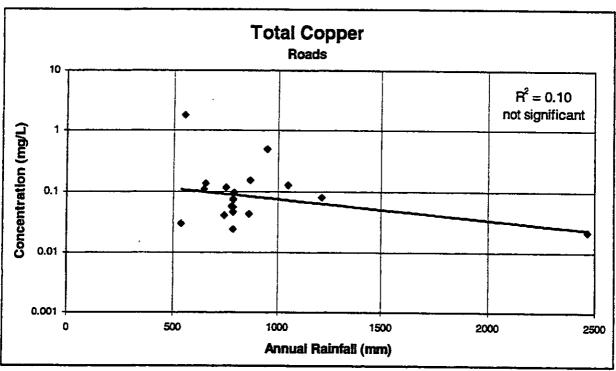


Figure 44. Total Copper Concentration (Roads) vs Annual Rainfall

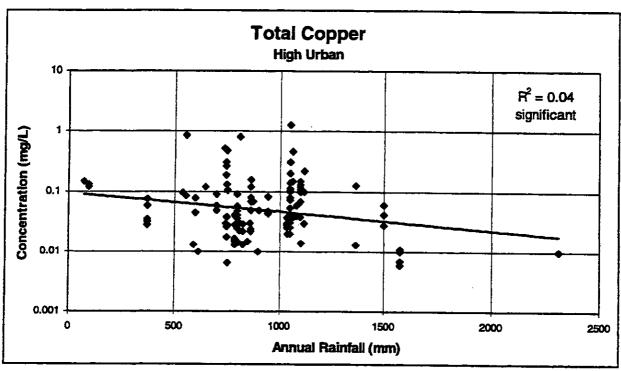


Figure 45. Total Copper Concentration (High Urban) vs Annual Rainfall

3.12.4 Summary

Copper concentrations in runoff tend to be highest from roads and non-residential urban areas, and lowest from roofs, low urban, and residential urban areas. This tends to suggest that the

main source (or sources) is at a low elevation and associated with main roads and industrial and commercial areas, although the evidence is less compelling than in the case of lead.

Summary statistics are listed in Table 12 for the distinct land use subgroups identified.

Table 12. Total Copper Summary Statistics

Subgroup	Sample	Sample Log Transformed Data		Untransformed Data (mg/L)			
	size	Mean	Std. Dev.	Arith. Mean	Geo. Mean	Median	
Roads	23	-1.09	0.44	0.17	0.081	0.076	
Roofs	16	-1.62	0.56	0.061	0.024	0.018	
Residential	59	-1.44	0.42	0.057	0.036	0.036	
Non-resid. high urban	81	-1.21	0.49	0.13	0.062	0.054	
Low urban	6	-1.43	0.19	0.040	0.037	0.038	

3.13 Total Cadmium

Cadmium is highly toxic and has been implicated in some cases of poisoning through food. Cadmium causes cancer in laboratory animals, and has been linked epidemiologically with some human cancers (Eaton et al. 1995). It accumulates mainly in the liver and kidneys of humans and animals, and tends to be concentrated by shellfish (World Health Organization 1984). Cadmium in stormwater runoff is mostly associated with dissolved solids and colloidal material (Makepeace et al. 1995). The most commonly measured components of total cadmium are dissolved and particulate cadmium, although speciation schemes that distinguish the bioavailable and potentially toxic forms have also been used to specify the components of total cadmium (Morrison et al. 1984; Flores-Rodriguez et al. 1993).

Sources of cadmium include combustion, wear of tyres and brake pads, possible combustion of lubricating oils, industrial emissions, agricultural use of sewage sludge, fertilisers, and pesticides, corrosion of galvanised metals (Makepeace et al. 1995), and landfill leachate (World Health Organization 1984), presumably contaminated by discarded rechargeable batteries.

A total of 86 records were obtained for total cadmium, including 57 records from high urban areas other than roads and roofs. The observed range extends from 0.000067 mg/L for a gravel and zinc sheet roof in Bayreuth, Germany, to 0.063 mg/L for a parking lot in Syracuse, New York state.

Total cadmium concentrations from all land uses closely follow the log-normal distribution (Figure 46). Basic statistics describing the concentrations of total cadmium from various land uses (in log coordinates) are tabulated in Appendix B, while means and standard deviations are shown in the form of bar graphs in Figure 47.

3.13.1 Roads

There is no significant difference in mean cadmium concentration between runoff from high urban roads and low urban roads, although that may be partly due to the small sample size. No significant relationships were found between cadmium concentration in road runoff and annual rainfall, percent impervious, or vehicles per day. Cadmium concentrations from roads are very similar to those from most kinds of urban areas.

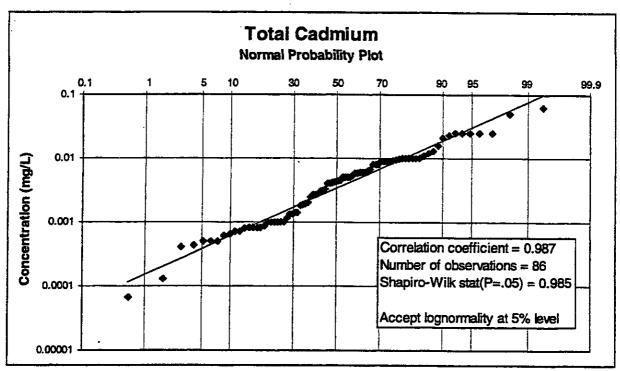


Figure 46. Total Cadmium Normal Probability Plot

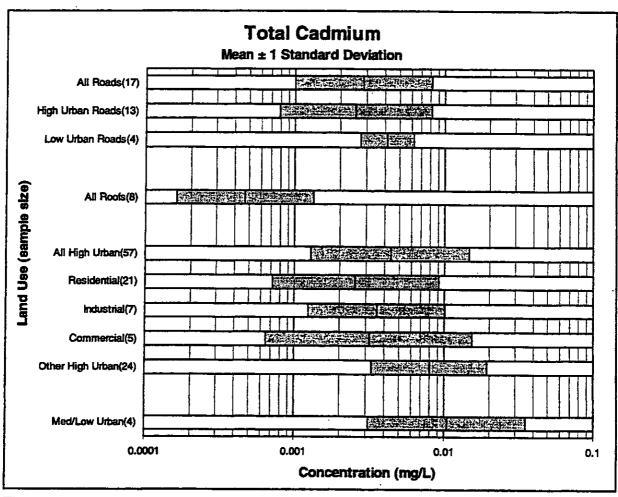


Figure 47. Total Cadmium Concentration vs Land Use

3.13.2 Roofs

Cadmium concentration from roofs is significantly lower than from any other major land use group, and is only one tenth of that from all high urban land use. The mean cadmium concen-

trations from zinc roofs and non-zinc roofs are very similar, although small sample sizes reduce the value of this observation. High urban roofs and low urban roofs cannot be separated using this sample, as all roofs with cadmium data are classified as high urban.

3.13.3 High Urban

In the high urban group, mixed use catchments exhibit significantly higher cadmium concentrations than the predominantly single use catchments (residential, industrial, and commercial). It is difficult to see why this should be so. Although in principle the group could contain catchments which were largely institutional or urban open space (i.e. not residential, industrial, or commercial), examination of the data file shows that this is not the case, at least for those records where a detailed breakdown of land use is given. Only two records document urban open space exceeding 20%, and institutional land use exceeding 20% is not recorded at all. So the mixed use catchments in this sample contain just the same land uses as the single use catchments.

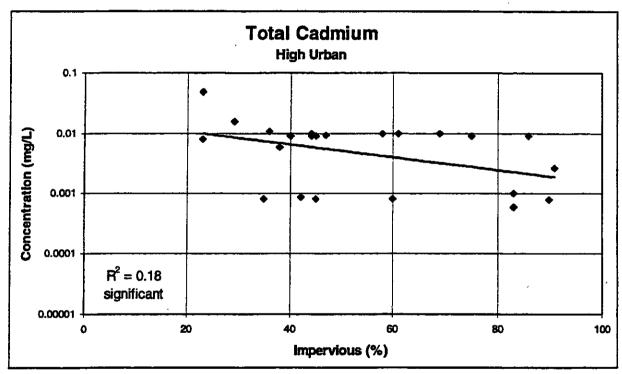


Figure 48. Total Cadmium Concentration (High Urban) vs Percent Impervious

There is a significant relationship in the high urban group between cadmium concentration and percent impervious (Figure 48). A higher percentage of impervious area is associated with lower cadmium concentrations, which tends to suggest a pervious area source. No significant relationships were found between cadmium concentration and mean annual rainfall or population density.

3.13.4 Low Urban

The sample size for medium and low urban areas is too small to carry much statistical weight. Even so it is worth noting that this group has superficially (but not always significantly) the highest mean cadmium concentration of any group.

3.13.5 Summary

Definitive conclusions are limited in this case by small sample sizes in many of the land use groups. Even so, it appears that roofs contribute very little cadmium to urban runoff. Higher concentrations from medium and low urban areas, higher concentrations from mixed urban

catchments, and lower concentrations from impervious areas, all suggest that pervious areas are a major source of cadmium. This is an unexpected result, given the likely sources noted above. Either the urban sources are small compared with the non-urban sources, or the result is just a chance occurrence in a relatively small data set.

Summary statistics are listed in Table 13 for the distinct land use subgroups identified.

Table 13. Total Cadmium Summary Statistics

Subgroup	Sample	Log Transformed Data		Untransformed Data (mg/L)		
	size	Mean	Std. Dev.	Arith. Mean	Geo. Mean	Median
Roads	17	-2.54	0.46	0.0064	0.0029	0.0028
Roofs	8	-3.33	0.46	0.00066	0.00047	0.00068
Resid., Ind. & Comm.	33	-2.55	0.54	0.0059	0.0028	0.0041
Other high urban	24	-2.10	0.39	0.011	0.0079	0.0091
Medium/low urban	4	-1.98	0.53	0.015	0.010	0.018

3.14 Total Chromium

Chromium occurs in both trivalent and hexavalent forms. In chlorinated or aerated water, hexavalent chromium is the predominant form. Trivalent chromium appears to be essential for human metabolism, and is considered to be practically non-toxic. Hexavalent chromium is associated with liver and kidney damage, gastrointestinal irritation, and increased risk of cancer (World Health Organization 1984), and is also more toxic to aquatic organisms. Chromium in stormwater runoff is mostly associated with suspended solids (Makepeace et al. 1995).

Sources of chromium include corrosion of welded metal plating, wear of moving parts in engines, dyes, paints, ceramics, paper, heating and cooling coils, fire sprinkler systems, pesticides, fertilisers (Makepeace et al. 1995), corrosion inhibitors, and sewage sludge applied to land (World Health Organization 1984).

A total of 77 records were obtained for total chromium, including 64 records from high urban areas other than roads and roofs. The observed range extends from 0.0005 mg/L for residential and urban open space sites in Burnaby, Canada, to 0.58 mg/L for an industrial and open space site in Melbourne, Australia.

Total chromium concentrations from all land uses closely follow the log-normal distribution (Figure 49). Basic statistics describing the concentrations of total chromium from various land uses (in log coordinates) are tabulated in Appendix B, while means and standard deviations are shown in the form of bar graphs in Figure 50.

3.14.1 Roads

Roads produce the lowest chromium concentrations of any major group. Concentrations are similar to those from the residential subgroup, but significantly lower than from non-residential high urban areas. Based on this sample, roads do not appear to be a major source of chromium in stormwater runoff.

3.14.2 High Urban

Residential catchments produce the lowest concentrations of chromium in the high urban group, significantly lower than both the 'other high urban' mixed land use subgroup and all

non-residential high urban subgroups combined. Associated with the lower residential concentrations is a highly significant negative relationship with population density - the more people per hectare the lower the chromium concentration (Figure 51).

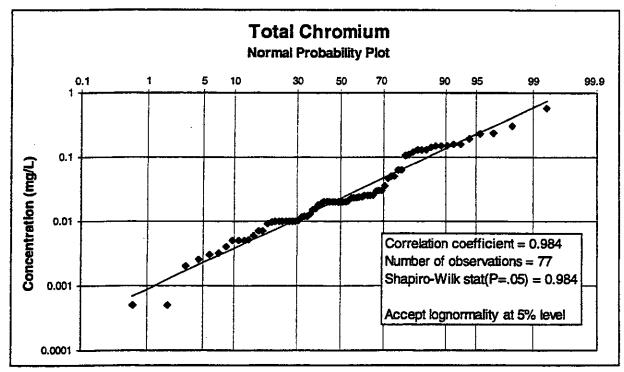


Figure 49. Total Chromium Normal Probability Plot

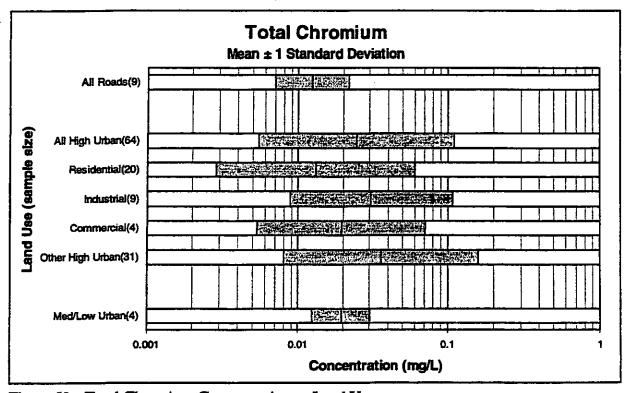


Figure 50. Total Chromium Concentration vs Land Use

There is no significant relationship with either mean annual rainfall or percent impervious. But the relationship with rainfall is interesting, even so, because the slope of the line is very similar to that for many other quality parameters (Figure 52).

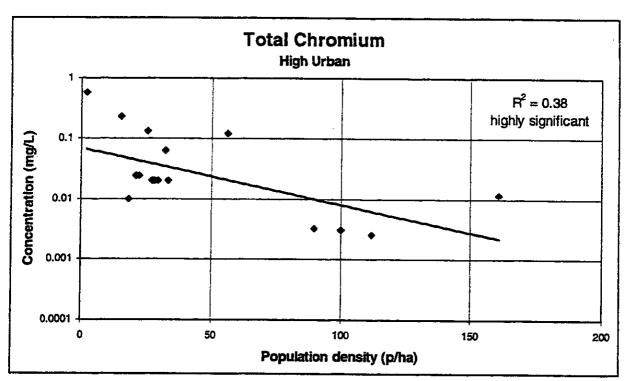


Figure 51. Total Chromium Concentration (High Urban) vs Population Density

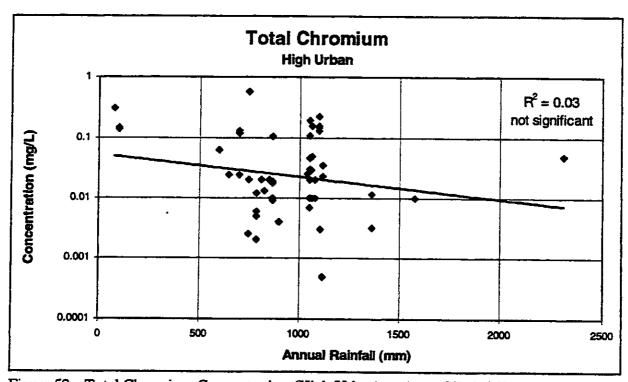


Figure 52. Total Chromium Concentration (High Urban) vs Annual Rainfall

3.14.3 Summary

Total chromium is the only quality parameter in this study, other than the microbiological measures, for which concentrations from roads are significantly lower than from all high urban catchments excluding roads and roofs. A mental association between vehicles and metallic chromium evidently does not translate into a similar association for the element in urban runoff. Concentrations from residential areas are significantly lower than from all other high urban areas. Perhaps this can be related to corrosion inhibitors in heating, cooling, and fire protection systems in larger industrial, commercial, and institutional buildings. There are

no measurements of chromium in roof runoff in the data set, and the samples for medium and low urban areas are too small to provide useful information.

Summary statistics are listed in Table 14 for the distinct land use subgroups identified.

Table 14.	Total	Chromium	Summary	Statistics
-----------	-------	----------	---------	-------------------

Subgroup	Sample	Log Transformed Data		Untransformed Data (mg/L)		
	size	Mean	Std. Dev.	Arith. Mean	Geo. Mean	Median
Roads	9	-1.91	0.25	0.014	0.012	0.015
Residential	20	-1.88	0.66	0.034	0.013	0.010
Non-resid. high urban	44	-1.48	0.61	0.077	0.033	0.024
Medium/low urban	4	-1.71	0.19	0.021	0.020	0.024

3.15 Total Nickel

Nickel is almost certainly essential for animal nutrition. It is relatively non-toxic, and there is little evidence of accumulation in the body. Skin contact through industrial exposure or by handling coins or jewellery may cause dermatitis (World Health Organization 1984). Nickel in stormwater runoff is mostly associated with suspended solids and organic matter. Sources of nickel include corrosion of welded metal plating, wear of moving parts in engines, electroplating and alloy manufacture, and food production equipment (Makepeace et al. 1995).

A total of 53 records were obtained for total nickel, including 48 records from high urban areas other than roads and roofs. The observed range extends from 0.0085 mg/L for a large urban area in Sarnia, Canada, to 0.15 mg/L for urban catchments in Durham, North Carolina, and New York city.

Total nickel concentrations from all land uses closely follow the log-normal distribution (Figure 53). Basic statistics describing the concentrations of total nickel from various land uses (in log coordinates) are tabulated in Appendix B, while means and standard deviations are shown in the form of bar graphs in Figure 54.

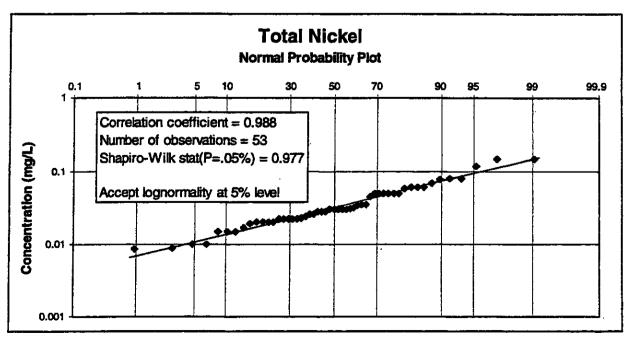


Figure 53. Total Nickel Normal Probability Plot

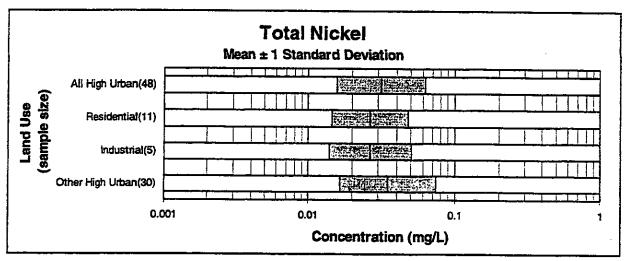


Figure 54. Total Nickel Concentration vs Land Use

3.15.1 Summary

Although there is a moderate sample of nickel concentrations from high urban areas, there is very little information from other land use categories. No significant differences were detected between the subgroups of high urban land use, and no significant relationships were found with mean annual rainfall, population density, or percent impervious. Nor do the roads, commercial, and low urban land uses, with too few samples to include on Figure 54, show any interesting deviations from the behaviour of the groups shown (see Appendix B). Summary information on nickel concentrations is therefore limited to statistics of a single sample, for high urban land use, as shown in Table 15.

Table 15. Total Nickel Summary Statistics

Subgroup	Sample	Log Transformed Data		Untransformed Data (mg/L)		
	size	Mean Std. Dev.		Arith. Mean	Geo. Mean	Median
High urban	48	-1.50	0.30	0.040	0.032	0.030

3.16 Total Iron

Iron is widely distributed in the environment, and is an essential element in human nutrition. In water it occurs mainly in the divalent (ferrous) and trivalent (ferric) states. The ferrous form occurs under reducing conditions, and is relatively soluble. The ferric form occurs under oxidising conditions, and is generally not significantly soluble unless the pH is very low. Iron in surface waters is normally in the ferric state, and is associated mainly with suspended solids.

Sources of iron in runoff include corrosion of vehicles, roadside hardware, and drains, burning of coke and coal, iron and steel industry emissions, landfill leachate, silt and clay particles, and potable water supplies. Iron in potable water is derived in turn from natural runoff waters, water treatment processes, and corrosion of pipes and fittings. Iron causes staining and has an astringent taste, and may be toxic to fish and invertebrates (World Health Organization 1984; Eaton et al. 1995; Makepeace et al. 1995).

Altogether 68 records were obtained for total iron, including 53 records from high urban areas excluding roads and roofs. The observed concentration range runs from 0.22 mg/L for a tributary of the Stamford Canal in Singapore to 38 mg/L for an agricultural catchment in northern Virginia.

Total iron concentrations from all land uses closely follow the log-normal distribution (Figure 55). Basic statistics describing the concentrations of total iron from various land uses (in log coordinates) are tabulated in Appendix B, while means and standard deviations are shown as bar graphs in Figure 56.

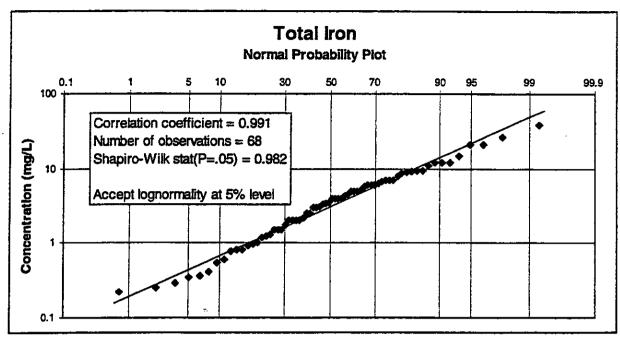


Figure 55. Total Iron Normal Probability Plot

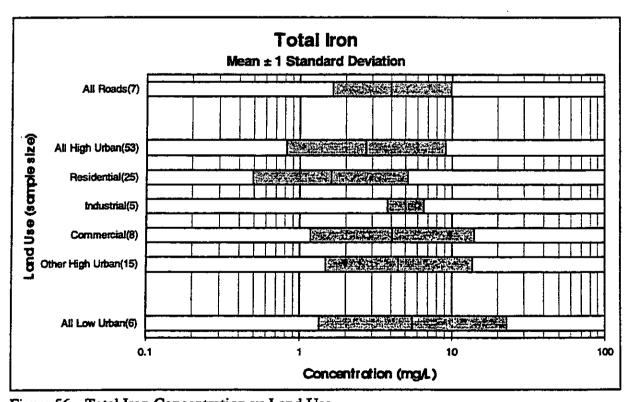


Figure 56. Total Iron Concentration vs Land Use

3.16.1 High Urban

Residential catchments produce the lowest concentrations of iron in the high urban group. Typical concentrations are only one third of those from all other high urban land uses, which is a highly significant difference. A tendency for iron concentration to decrease with increas-

ing mean annual rainfall is not significant (Figure 57), yet is very similar in magnitude to the trend observed for many other quality parameters.

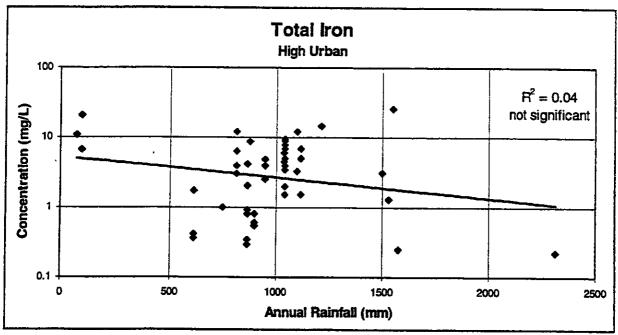


Figure 57. Total Iron Concentration (High Urban) vs Annual Rainfall

3.16.2 Summary

Iron concentrations from roads and low urban catchments are very similar to those from high urban catchments other than residential. Hence residential land use is the only subgroup with distinctive behaviour for this parameter. The reasons for lower iron concentrations from residential areas are not immediately obvious, but the similarity of all other subgroups suggests that sources of iron are widely distributed in both urban and rural catchments. Perhaps different sources dominate in different areas.

Summary statistics are listed in Table 16 for the distinct land use subgroups identified.

Table 16. Total Iron Summary Statistics

Subgroup	Sample	le Log Transformed Data		Untransformed Data (mg/L)		
	size	Mean	Std. Dev.	Arith. Mean	Geo. Mean	Median
Roads	7	0.60	0.39	6.0	4.0	3.4
Residential	25	0.20	0.51	2.8	1.6	2.0
Non-resid. high urban	28	0.65	0.45	6.8	4.5	5.0
Low urban	6	0.74	0.62	11.3	5.5	7.8

3.17 Total Manganese

Manganese is an essential element in human and animal nutrition, being involved in many important metabolic processes, and is regarded as one of the least toxic elements. Manganese occurs in a range of valence states, and in both dissolved and suspended forms. In potable water supplies it imparts an undesirable taste to beverages, and stains plumbing fixtures and laundry (World Health Organization 1984). Sources of manganese include wear of tyres and brake pads, steel manufacturing, manufacture of paints and dyes, and fertilisers (Makepeace et al. 1995).

A total of 21 records were obtained for manganese, including 16 records from high urban areas other than roads and roofs. The observed range extends from 0.05 mg/L for an urban catchment in Knoxville, Tennessee, to 1.27 mg/L for an urban catchment in Portland, Oregon.

Total manganese concentrations from all land uses closely follow the log-normal distribution (Figure 58). Basic statistics describing the concentrations of total manganese from various land uses (in log coordinates) are listed in Appendix B, while means and standard deviations are shown as bar graphs in Figure 59.

Figure 58. Total Manganese Normal Probability Plot

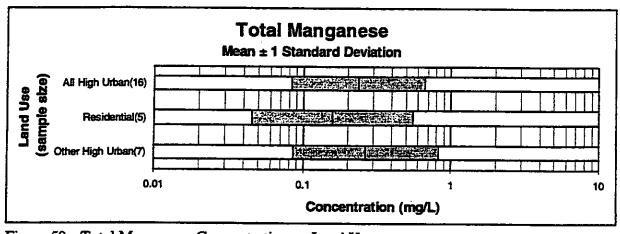


Figure 59. Total Manganese Concentration vs Land Use

3.17.1 Summary

Analysis of manganese concentrations is hampered by the limited data available. Only two land use subgroups have sufficient data for comparison, and these are not significantly different. Nor is there any apparent relationship between manganese concentration and mean annual rainfall. Summary information on manganese concentrations is therefore limited to statistics of a single sample, for high urban land use, as shown in Table 17.

Table 17. Total Manganese Summary Statistics

Subgroup	Sample	Log Transformed Data		Untransformed Data (mg/L)		
	size	Mean Std. Dev.		Arith. Mean	Geo. Mean	Median
High urban	16	-0.63	0.45	0.37	0.23	0.26

3.18 Total Mercury

Mercury is a highly toxic element which serves no known beneficial physiological function. Mercury can exist in the environment as the metal, as inorganic salts, and as organomercurial compounds such as methyl mercury. Fish and mammals absorb and retain methyl mercury to a greater extent than inorganic mercury, and it is in this form that mercury accumulates along food chains. Mercury causes a wide range of toxic effects in humans, and is also toxic to fish and invertebrates (World Health Organization 1984).

Sources of mercury include emissions from the chlor-alkali industry, coal combustion, paint industry, dental amalgam (Makepeace et al. 1995), and runoff from gold mining sites.

Altogether 17 records were obtained for total mercury, including 13 records from high urban areas excluding roads and roofs. The observed range extends from 0.000028 mg/L for a large urban area in Sault Sainte Marie, Canada, to 0.0027 mg/L for an urban catchment in Knoxville, Tennessee.

Total mercury concentrations from all land uses closely follow the log-normal distribution (Figure 60). Basic statistics describing the concentrations of total mercury from various land uses are listed in Appendix B, while the mean and standard deviation of the high urban group are shown in Figure 61.

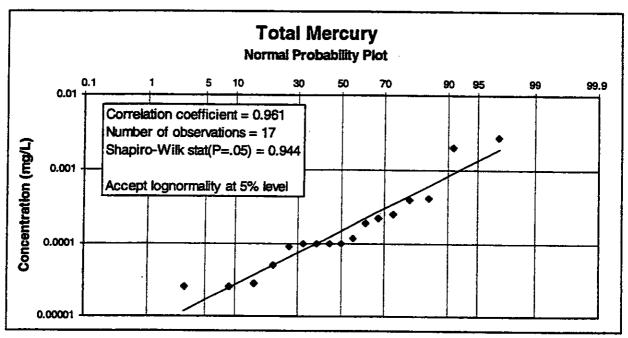


Figure 60. Total Mercury Normal Probability Plot

3.18.1 Summary

Most observations in this very small sample fall in the same land use subgroup, so no useful comparisons can be made. There is, however, a significant relationship between mercury concentration and mean annual rainfall, as shown in Figure 62. Mercury concentration appears to increase as annual rainfall increases, which is very unusual. But the three high rainfall

points all derive from the same town, and may be influenced together by some local factor other than rainfall. Although the relationship is significant, it is not very robust.

Summary statistics for the high urban land use subgroup are shown in Table 18.

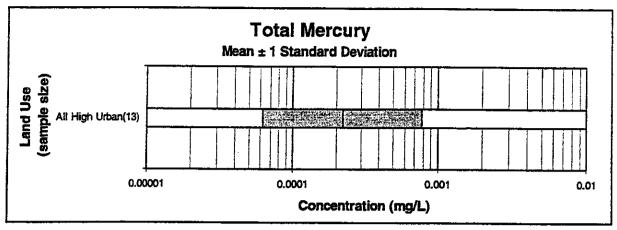


Figure 61. Total Mercury Concentration vs Land Use

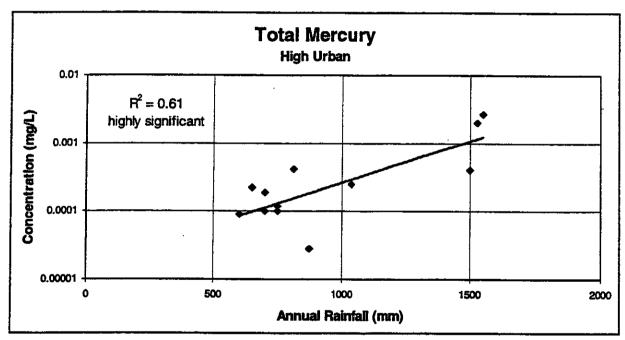


Figure 62. Total Mercury Concentration (High Urban) vs Annual Rainfall

Table 18. Total Mercury Summary Statistics

Subgroup	Sample	Log Transf	ormed Data	Untransformed Data (mg/L)		
	size	Mean Std. Dev.		Arith. Mean	Geo. Mean	Median
High urban	13	-3.66	0.55	0.00052	0.00022	0.00019

3.19 Total Coliforms

Total coliforms are used as an indicator of microbiological contamination of water. An indicator organism is not necessarily dangerous in itself, but indicates the likely presence of fecal contamination, and hence the possible presence of pathogens in the sample.

Total coliforms are a sensitive measure of possible fecal contamination, since they are present in large numbers in the feces of warm blooded animals, and can be detected at low concentra-

tions. But they do not confirm the presence of fecal contamination, as they can also be derived from vegetation and soil (World Health Organization 1984; Eaton et al. 1995).

Altogether 57 records were obtained for total coliforms, including 47 records from high urban areas other than roads and roofs. The observed range extends from 47 organisms per 100 mL for a galvanised iron roof in Selangor, Malaysia, to 11,000,000 organisms per 100 mL for a residential catchment in West Lafayette, Indiana.

Total coliform numbers from all land uses closely follow the log-normal distribution (Figure 63). Basic statistics describing total coliform numbers from various land uses (in log coordinates) are tabulated in Appendix B, while means and standard deviations are shown as bar graphs in Figure 64.

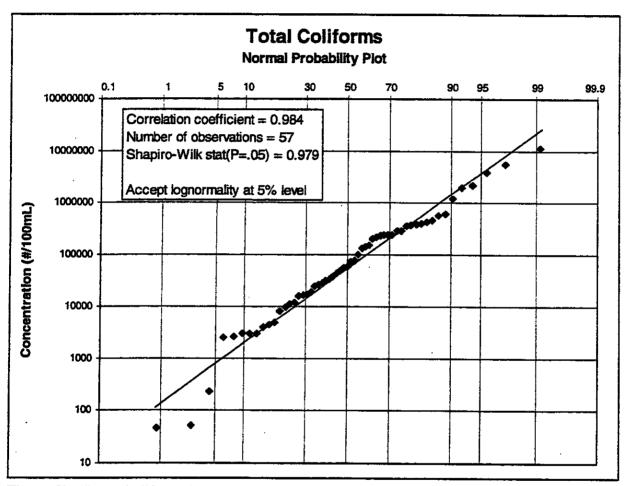


Figure 63. Total Coliforms Normal Probability Plot

3.19.1 High Urban

In the high urban group, residential and other high urban land uses are not significantly different. Despite a moderate sample size overall, industrial and commercial land uses are too poorly represented to test. No significant relationships were found between total coliform numbers and population density or mean annual rainfall.

3.19.2 Summary

Total coliform numbers are characterised by a very wide observed range, compared with the non-microbiological water quality parameters. As will be seen, this feature is shared by all three microbiological parameters investigated. Typical total coliform numbers from high urban areas are twenty times as high as from low urban areas, but even within the high urban land use group alone the observed range is extraordinarily wide. The highest total coliform

counts approach those from raw sewage (Olivieri et al. 1978), and in these cases a degree of cross connection between drainage and sewage systems must be counted among the likely causes.

Summary statistics are listed in Table 19 for the distinct land use subgroups identified.

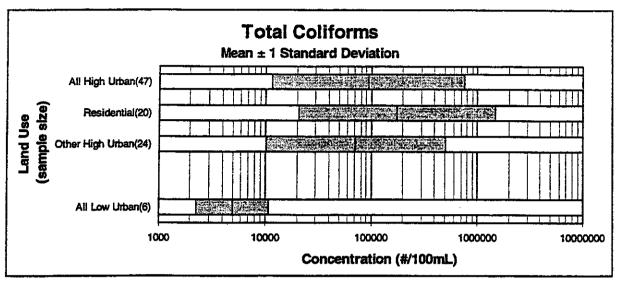


Figure 64. Total Coliforms vs Land Use

Table 19. Total Coliforms Summary Statistics

Subgroup	Sample	Log Transf	ormed Data	Untransformed Data (mg/L)					
	size	Mean	Std. Dev.	Arith. Mean	Geo. Mean	Median			
High urban	47	4.97	0.91	620,000	93,000	130,000			
Low urban	6	3.70	0.34	6,700	5,000	3,700			

3.20 Fecal Coliforms

Fecal coliforms are used as an indicator of fecal contamination of water. Fecal (or thermotol-erant) coliforms are a subset of total coliforms, and are more closely associated with fecal contamination than the total coliforms. Escherichia coli (E. coli) is a member of this group, and is specifically of fecal origin (World Health Organization 1984).

Altogether 117 records were obtained for fecal coliforms, including 81 records from high urban areas excluding roads and roofs. The observed range extends from less than one organism per 100 mL for a galvanised iron roof in Armidale, Australia, to 3,400,000 organisms per 100 mL for an urban catchment in West Lafayette, Indiana.

Fecal coliform numbers from all land uses closely follow the log-normal distribution (Figure 65). Basic statistics describing fecal coliform numbers from various land uses (in log coordinates) are tabulated in Appendix B, while means and standard deviations are shown as bar graphs in Figure 66.

3.20.1 High Urban

Fecal coliform counts from residential areas are typically ten times as large as those from other types of high urban land use, which is a highly significant difference (Figure 66). Associated with this is a highly significant relationship between fecal coliforms and population density, with higher population giving higher fecal coliform counts (Figure 67). Possible

causes presumably include sewer overflows, household pets, and native animals acclimatised to urban areas.

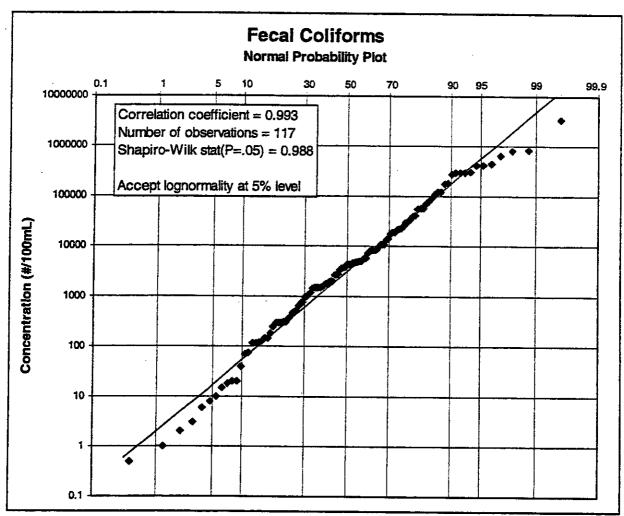


Figure 65. Fecal Coliforms Normal Probability Plot

3.20.2 Summary

Taken as a single group, high urban areas produce fecal coliform counts very similar to those from roads, and fully 100 times higher than those from roofs and low urban areas. The observed range across all land uses is exceptionally wide, and so is the difference between land use groups. Summary statistics are listed in Table 20 for the distinct land use subgroups identified.

Table 20. Fecal Coliforms Summary Statistics

Subgroup	Sample	Log Trans	formed Data	Untransformed Data (mg/L)					
	size	Mean	Std. Dev.	Arith. Mean	Geo. Mean	Median 4,800 115			
Roads	11	3.85	0.61	18,000	7,100				
Roofs	14	1.73	1.07	290	54				
Residential	42	4.38	0.98	200,000	24,000	17,000			
Non-resid. high urban	39	3.38	1.08	26,000	2,400	1,900			
Low urban	9	1.88	1.19	880	76	39			

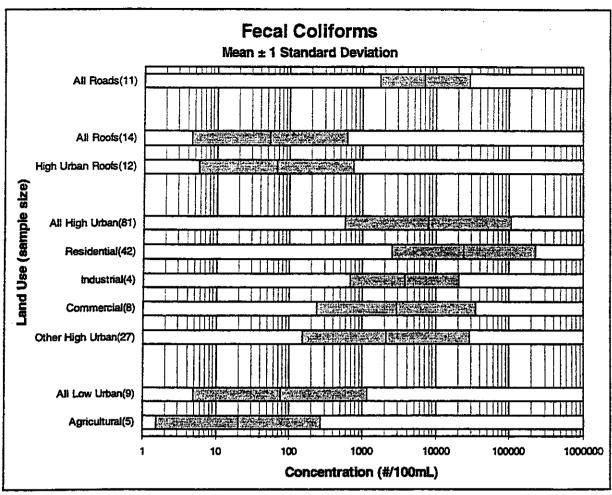


Figure 66. Fecal Coliforms vs Land Use

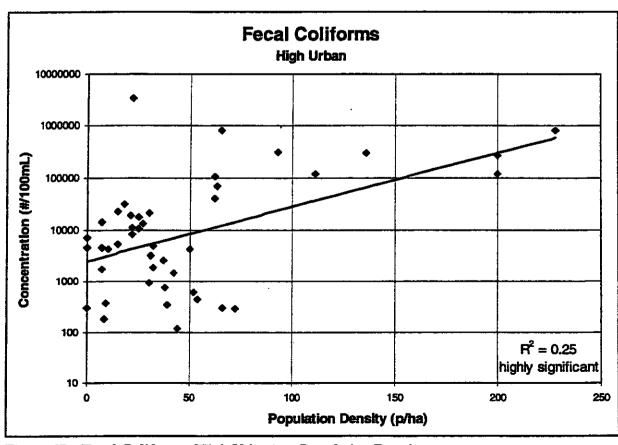


Figure 67. Fecal Coliforms (High Urban) vs Population Density

3.21 Fecal Streptococci

The term fecal streptococci refers to those streptococci normally present in the feces of humans and animals. Their presence in water generally indicates fecal pollution, and hence the possible presence of pathogens.

Altogether 34 records were obtained for fecal streptococci, including 19 records from high urban areas excluding roads and roofs. The observed range extends from 29 organisms per 100 mL for an institutional catchment in Ann Arbor, Michigan, to 660,000 organisms per 100 mL for a residential catchment in Baltimore, Maryland.

Fecal streptococci numbers from all land uses closely follow the log-normal distribution (Figure 68). Basic statistics describing fecal streptococci numbers from various land uses (in log coordinates) are tabulated in Appendix B, while means and standard deviations are shown as bar graphs in Figure 69.

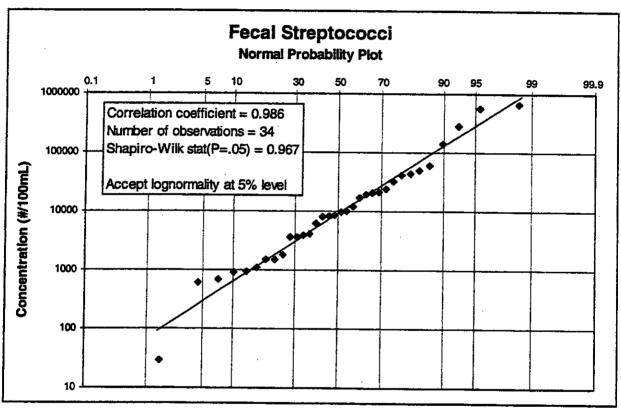


Figure 68. Fecal Streptococci Normal Probability Plot

3.21.1 Summary

Roads, high urban catchments excluding residential areas, and low urban catchments all produce very similar fecal streptococci numbers, on average. Typical counts from residential areas are nearly ten times as high, which is a significant difference. As with the other microbiological quality parameters, the observed range overall and the standard deviations of each land use subgroup are both very wide.

Summary statistics are listed in Table 21 for the distinct land use subgroups identified.

Taking the three microbiological parameters together, there is a distinct trend across the various land uses. Residential catchments produce the highest counts, followed by all other urban uses including roads, followed by low urban areas and all roofs with the lowest counts. Associated with the high residential counts is the highly significant (and highly scattered) relationship between fecal coliforms and population density. High bacterial counts are clearly associated with high population counts - of people, and perhaps of their pets.

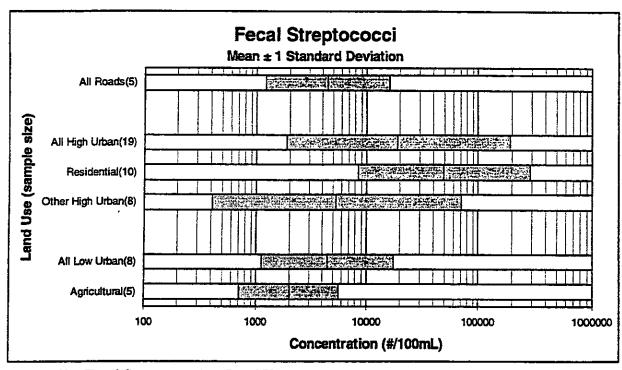


Figure 69. Fecal Streptococci vs Land Use

Table 21. Fecal Streptococci Summary Statistics

Subgroup	Sample	Log Transf	ormed Data	Untransformed Data (mg/L)					
	size	Mean	Std. Dev.	Arith. Mean	Geo. Mean	Median			
Roads	5	3.65	0.56	7,700	4,500	7,900			
Residential	10	4.69	0.77	170,000	49,000	42,000			
Non-resid. high urban	9	3.82	1.07	29,000	6,600	6,200			
Low urban	8	3.65	0.60	8,500	4,500	6,000			

4. CORRELATIONS BETWEEN PARAMETERS

Correlations between the various water quality parameters over repeated measurements at a single site have frequently been noted, particularly between suspended solids and hydrocarbons, phosphorus, and heavy metals (Walesh 1986; Preul & Ruszkowski 1987; Urbonas 1991). This can occur because the sources of pollution on a given catchment tend to remain constant, at least over the time duration of most sampling studies. Using the data set developed here, it is possible to test for associations between parameters over many sites, rather than at a single site as is more usually done.

Coefficients of determination (R²) have been calculated for all pairs of water quality parameters, and are shown in Table 22 for the pairs where the relationship is significant at the 5% level or better. All parameters are expressed as concentrations in log coordinates, except for pH which retains its untransformed index value.

Correlations between pairs of parameters in Table 22 are often statistically significant, but the coefficients of determination in many cases are surprisingly low. Significance depends on sample size as well as goodness of fit, so there can be a significant relationship in a large sample even when the goodness of fit is too low to be useful in practice. At the other extreme, non-significance in Table 22 may simply reflect an inadequate sample size. It does not prove the absence of any underlying relationship.

Table 22. Coefficients of Determination

	Coefficients of Determination (R ²) between Parameters																		
	TP	TN	COD	BOD	O&G	TOC	рH	Turb	Pb	Zn	Cu	Cd	Cr	Ni	Fe	Min	T.coli	F.coli	F.stre
SS	0.21	0.09	0.23	0.22		0.13		0.79	0.14	0.06	0.17	0.10	0.11	0.48	0.49	0.71		0.07	
TP		0.34	0.42	0.11					0.24	0.06	80.0							0.47	
TN			0.29	0.11		0.17			0.09	0.15	0.13				0.30	1		0.16	
COD				0.40		0.61		0.30	0.37	0.22	0.27		0.28	0.60	0.46	-		0.16	
BOD					0.35	0.58				0.18								0.14	
O&G															0.22				
TOC									0.38	0.32	0.39					Ì			
рН								0.28	0.24			0.15				ļ			
Turb]	0.61	0.25								0.37	
Pb										0.04	0.21	0.28	0.06					0.08	····-
Zn											0.15		0.06		0.22			0.12	
Cu								}				0.10	0.17	0.26	0.20				
Cd													0.28	0.19				0.20	
Cr														0.30	0.22				
Ni																			
Fe																0.77			
Mn																Ì			
T.coli									·									0.63	0.72
F.coli																			0.51
					blaı	nk = P	> 0.0	5, no	ormal	=P<	0.05.	bold	=P<	0.01					
											n log (-					

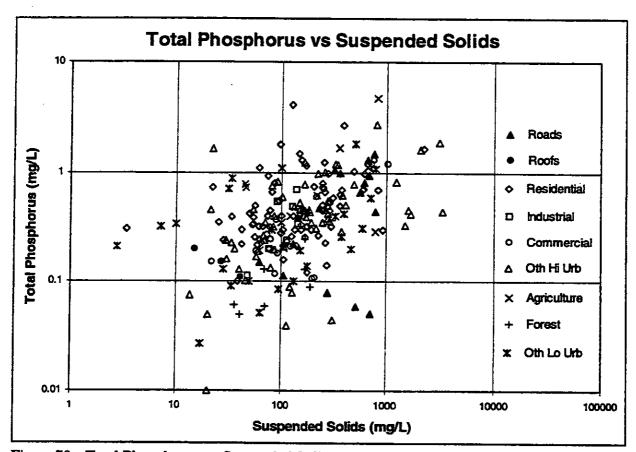
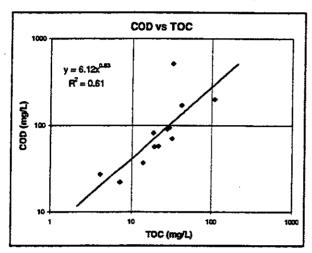



Figure 70. Total Phosphorus vs Suspended Solids

Typically the scatter about the regression line is wide, and the explanatory power of the regression is low. As an example, the relationship between total phosphorus and suspended solids, which has the largest sample size, is shown in Figure 70. With all land uses combined into a single group, the relationship with suspended solids concentration explains only 21% of the variation in total phosphorus concentration, despite being statistically highly significant.

Separate analysis of each land use type does not give an obvious improvement. Consideration of land use in Figure 70 provides little new information, other than an indication of the group means and standard deviations already summarised on the bar graphs in Section 3.

Total Manganese vs Suspended Solids

y = 0.0059x^{0.73}

Fr = 0.71

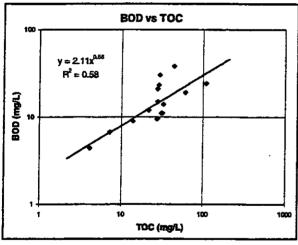
10

10

10

10

10


10

10000

Suspended Solids (mg/L)

Figure 71. COD vs TOC

Figure 74. Total Manganese vs Suspended Solids

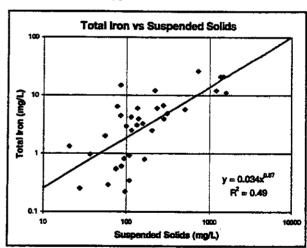
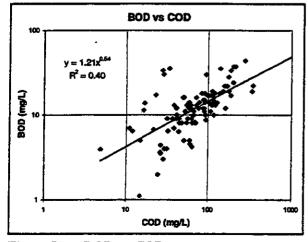



Figure 72. BOD vs TOC

Figure 75. Total Iron vs Suspended Solids

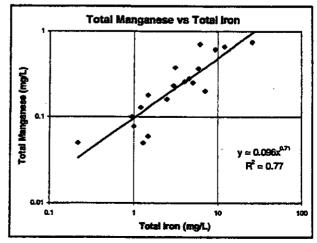
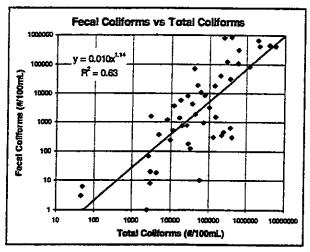



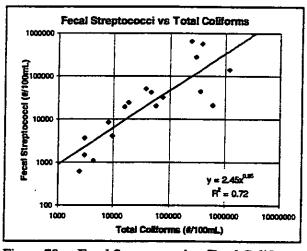
Figure 73. BOD vs COD

Figure 76. Total Manganese vs Total Iron

Despite the generally low correlations, there are several groups of parameters which exhibit potentially useful relationships. The first group comprises chemical oxygen demand (COD), biochemical oxygen demand (BOD), and total organic carbon (TOC) (Figure 71 to Figure 73). This association has been noted previously, for samples from a specific source (Section 3.4), and still shows a moderately good fit here, across many sources. With only one exception, the recorded CODs in Figure 71 are close to the amount of oxygen required to oxidise the carbon to carbon dioxide (32 mg oxygen per 12 mg carbon), suggesting that in most cases this is the main source of the chemical oxygen demand.

Suspended Solids vs Turbidity

y = 12.5x^{0.60}
R² = 0.79


100

100

Turbidity (NTU)

Figure 77. Fecal Coliforms vs Total Coliforms

Figure 80. Suspended Solids vs Turbidity

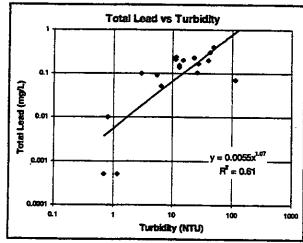
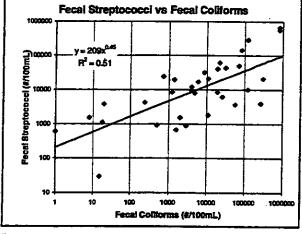



Figure 78. Fecal Streptococci vs Total Coliforms Figure 81.

Figure 81. Total Lead vs Turbidity

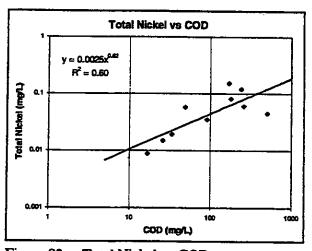


Figure 79. Fecal Streptococci vs Fecal Coliforms Figure 82.

Figure 82. Total Nickel vs COD

A second group includes total iron, total manganese, and suspended solids (Figure 74 to Figure 76). The correlation between iron concentration and manganese concentration, in log coordinates, is particularly high. The chemical similarity between these elements, as indicated by their adjacent positions in the periodic table, evidently does extend to their behaviour in stormwater runoff. The observed concentration of iron is typically ten to twenty times higher than that of manganese.

The three microbiological parameters form a third group (Figure 77 to Figure 79). Their most distinctive common feature is that they are living organisms – they can increase or die off depending on conditions, and hence are not conservative parameters. Other characteristics of this group – a very wide observed range, and a significant association with population density – have been noted previously (Section 3.21.1).

Turbidity and suspended solids are highly correlated (Figure 80), as could be expected, since both parameters are associated with particles suspended in the water sample. The correlation is not even higher because the relationship also depends on the particle size distribution. Finer particles scatter light more effectively giving higher turbidity, but larger particles contribute more to the total suspended mass.

Two more relationships show a coefficient of determination of 0.6 or more – total lead vs turbidity (Figure 81), and total nickel vs COD (Figure 82). They are both plausible relationships, given that climatic or topographic conditions may cause high levels of many parameters simultaneously from a given catchment, but arguably no more so than many other combinations which do not stand out. Perhaps they are just chance associations: in about two hundred tests some false positives are likely to occur, even at the 99% confidence level.

Although the relationships noted above are highly significant, the low coefficients of determination for many other parameter pairs is also an interesting result. The association between water quality parameters which may be expected to apply at a single site is often much reduced when tested over many sites. As a result, there are only a few cases where one quality parameter can provide a good estimate of another parameter. No single quality parameter can provide a good estimate of other parameters.

5. DISCUSSION

The relationships between contaminant concentrations and catchment characteristics provide some insight into the likely processes of contamination, and may have implications for management and control. Relationships which apply to single parameters have been noted previously, but there are also some more general effects.

5.1 Land Use

Land use zoning and actual surface use are frequently presented in the source documents as descriptive information rather than numeric data, and therefore they have been treated as grouping variables in this study. Their effect has been assessed by comparing the behaviour of the groups they define.

There are fewer significant differences between land use zonings within the high urban group than might be expected. All significant differences are noted under the individual parameters, but broadly speaking residential zonings tend to produce lower concentrations of metals and organic carbon, and higher concentrations of phosphorus and microbiological measures than the other urban zonings. No significant differences were detected between high urban land use zonings for either suspended solids or total nitrogen, despite their very large sample sizes. The

scatter of results from the reported studies is wide, but the standard urban land use zonings explain only a small part of it. This, incidentally, helps to explain the good fit of the raw data to a simple statistical distribution. Since the main parameter used to deliberately stratify the measured sites actually has only a small effect, it is almost as if the sites were selected at random from the whole population.

Actual surface use has more effect. Concentrations from roads are generally similar to those from mixed high urban areas or perhaps a little higher, but concentrations from roofs are substantially lower for all parameters tested except zinc. Since roads and roofs together make up a large proportion of the impervious area of an urban catchment, it should not really be surprising that concentrations from mixed high urban catchments tend to lie between those from the two single uses. But it also follows from this that roads are a major source of most contaminants in urban runoff.

The elevation effect noted previously for suspended solids seems to apply to many quality parameters. Any contaminant associated with particles is likely to gravitate to lower levels during dry weather redistribution by wind and eddies. In an urban area, the highest impervious areas are typically roofs, and the lowest are roads. So the high contaminant contributions from roads are a result of their lower elevation, as well as their vehicular traffic.

If urban and rural catchments are compared, a distinction should be made between undisturbed rural and agricultural rural use. Concentrations of suspended solids, total nitrogen, and total phosphorus are on average highest for agricultural catchments, intermediate for urban catchments, and lowest for forested catchments. Where limited sample size does not permit this distinction, concentrations of total lead, BOD, COD, total coliforms, fecal coliforms, and fecal streptococci are higher on average from high urban catchments than from all low urban catchments taken as a single group.

5.2 Catchment Characteristics

Mean annual rainfall, percent impervious, population density, and vehicle density are usually described numerically in the source documents, if they are mentioned at all. In this study, they have been used as explanatory variables in regression analysis. Many of the relationships have been noted individually in the previous section. To help provide an overview of quality parameters with similar behaviour, a table of regression coefficients is shown in Appendix C.

A negative relationship between log concentration and mean annual rainfall is very common in the metal and non-metal parameters, but not in the microbiological measures. It appears to apply to the roads, high urban, and low urban groups. It was not detected in the roofs group, but that could be due to the smaller sample tested. The effect is strongest for suspended solids and total organic carbon - increasing the annual rainfall by 500 mm approximately halves the most likely concentration in runoff. For most contaminants the effect is less than this, but even so the mean annual rainfall has less influence on total load than would otherwise be the case. This seems to indicate some measure of source limitation for these water quality parameters.

There is a strong positive relationship between log concentration and population density for total nitrogen, BOD, and fecal coliforms, and a tendency in the same direction for COD and total coliforms, but not for metals. Sewage overflows would contribute to all these parameters, and so must be a possible cause, but pets, garden maintenance, littering, and other human activities may also be involved.

Higher percent impervious area is associated with higher concentrations of lead and zinc, but lower concentrations of cadmium. The effect for lead and zinc presumably derives from an association with impervious roads (lead) and roofs (zinc). Cadmium is an anomaly - much of

its behaviour in this sample suggests a pervious source, although it is not clear why this should be so.

Analysis of traffic density is limited by the sample size. There is a strong positive association with lead concentration, presumably due to petrol additives, and a strong negative association with total phosphorus. Apparently vegetation and other sources of phosphorus are less common near high-use roads.

5.3 Explanatory Power

The preceding analysis has revealed a number of significant relationships between runoff concentrations and catchment characteristics, and a number of significant differences between land use groups. Some of these are significant at very high confidence levels, but overall the explanatory power remains low.

The lack of explanatory power has two main implications. Firstly, it means that the analysis described here does not in itself provide a useful method for estimating pollutant loads or concentrations, except perhaps at the broadest preliminary screening level. But perhaps, by helping to direct research into other areas, it may be a step on the path to a better method.

Secondly, it means that one or more important explanatory variables is yet to be recognised. Unless we decide that the process is ultimately chaotic, and hence effectively unknowable at a practical level, we must accept that some factor or process can explain more of the observed variability than has been achieved here. Measurement errors and differences in technique and in land use description could scarcely explain scatter of this magnitude. Possibilities include catchment characteristics (such as geology and soil type), storm characteristics (such as rainfall intensity), and the level of detail used in analysis.

Analysis of a subset of this data (sites with retarding basins) as part of another study suggests that geological age of the catchment may have some effect - older sediments give higher concentrations of suspended solids. Yet, as with the other variables, the effect is significant but the explanatory power is low. It is not the lateral step or quantum leap we are looking for.

Rainfall intensity is rather more promising. It is not often documented in the studies analysed here, particularly at short time intervals, but its effect on washoff has nevertheless been noted (Sartor & Boyd 1972; Reinertsen 1981; Desbordes & Servat 1987; Yaziz et al. 1989; Baffaut & Delleur 1990; Bujon et al. 1992; Kuo et al. 1993). Price & Mance (1978) and Coleman (1993) associate washoff specifically with particle detachment by rainfall impact energy, which is a standard technique for erosion of pervious areas (Hudson 1971). Because rainfall energy depends on a high power of rainfall intensity, it is important to incorporate intensity information at short time intervals. Under this hypothesis most contaminant mobilisation in an event may occur during a few minutes of high intensity rainfall. An annual mean or event mean intensity does not provide adequate resolution of these processes. Preliminary investigation of short term rainfall intensity is very promising (Chiew et al. 1997).

Alternatively, better time and space resolution may improve the fit of the factors used here. The relatively greater effect of actual surface use, the documented importance of small areas of soil disturbance (Pisano 1976; Barfield et al. 1978; Konno & Nonomura 1981), and the intuitive significance of local sources and spills, all suggest that this may be the case. If so, it is most unfortunate. Only rainfall is likely to be widely available at short time intervals, and moving to finer spatial scales sharply increases the modelling effort on a given catchment. A level of detail greater than that achieved in documented research is unlikely to be practical in day to day operations.

6. CONCLUSIONS

The following conclusions can be drawn from this study.

- Concentration data are approximately log-normally distributed for all water quality parameters investigated except pH, which is approximately normally distributed.
- Concentrations of suspended solids, total nitrogen, and total phosphorus are on average highest for agricultural catchments, intermediate for urban catchments, and lowest for forested catchments.
- Concentrations of total lead, BOD, COD, total coliforms, fecal coliforms, and fecal streptococci are higher on average from high urban catchments than from all low urban catchments taken as a single group.
- Roads are a major source of most contaminants in urban runoff. This is due to their lower elevation as well as their vehicular traffic.
- Concentrations from roofs are substantially lower on average than concentrations from roads and all high urban zonings, for all parameters tested except zinc.
- Within urban areas, residential zonings tend to produce lower concentrations of metals and organic carbon, and higher concentrations of phosphorus and microbiological measures than the other urban zonings, but the explanatory power is low.
- Urban sites with higher mean annual rainfall produce lower stormwater concentrations, on average, for most metal and non-metal parameters, but not for the microbiological measures. For suspended solids, which shows the strongest effect, increasing the mean annual rainfall by 500 mm approximately halves the most likely concentration in runoff.
- Sites with higher population density produce higher stormwater concentrations, on average, for total nitrogen, BOD, and fecal coliforms, and perhaps for COD and total coliforms, but not for metals.
- Correlations between water quality parameters over many measurement sites are often low.
 As a result, there are only a few cases where one quality parameter can provide a good estimate of another parameter. No single quality parameter can provide a good estimate of a range of other parameters.
- The explanatory power of all normally reported catchment characteristics is low, which
 implies that one or more important explanatory variables is yet to be recognised. Possible
 contenders include geological age of catchment rocks and soils, and short term rainfall
 intensity. A higher level of detail in modelling may also be helpful, but would be difficult
 to apply in practice.

7. REFERENCES

- Aalderink, R.H., Van Duin, E.H.S., Peels, C.E. & Scholten, M.J.M. 1990, 'Some Characteristics of Run-off Quality from a Separated Sewer System in Lelystad, The Netherlands', Proceedings of the Fifth International Conference on Urban Storm Drainage, Osaka, Japan, vol. 1, ed. Y. Iwasa & T. Sueishi, pp. 427-432.
- Akerlindh, G. 1950, 'The Quality of Storm Water Flow', Nordisk Hygienisk Tidskrift, vol. 31, no. 1.
- Allison, R.A. & Chiew, F.H.S. 1997, 'Leaf Litter in Stormwater: A Major Source of Nutrients?', Water, vol. 24, no. 1, pp. 18.

- Asplund, R., Mar, B.W. & Ferguson, J.F. 1982, 'Total Suspended Solids in Highway Runoff in Washington State', J Environ Eng Div, Proc Am Soc Civ Eng, vol. 108, no. EE2, pp. 391-404.
- Athayde, D.N., Shelley, P.E., Driscoll, E.D., Gaboury, D. & Boyd, G. 1983, Results of the Nationwide Urban Runoff Program, Environmental Protection Agency, Washington, DC., PB84-185537.
- Baffaut, C. & Delleur, J.W. 1990, 'Calibration of SWMM Runoff Quality Model with Expert System', J Water Resour Plann Manage, vol. 116, no. 2, pp. 247-261.
- Balades, J.D., Cathelain, M., Marchandise, P., Peybernard, J. & Pilloy, J.C. 1984, 'Chronic Pollution of Intercity Motorway Runoff Waters', Water Sci Technol, vol. 17, pp. 1165-1174.
- Ball, J.E., Hogan, P.M., Batley, G.E. & Brockbank, C. 1994, 'Assessing the Quantity and Quality of Stormwater Runoff from Road Surfaces', Water Down Under 94, Adelaide, South Australia, vol. 3, pp. 299-304.
- Bannerman, R.T., Owens, D.W., Dodds, R.B. & Hornewer, N.J. 1993, 'Sources of Pollutants in Wisconsin Stormwater', *Water Sci Technol*, vol. 28, no. 3-5, pp. 241-259.
- Barfield, B.J., Kao, T.Y. & Haan, C.T. 1978, 'Sediment Control from Urban Construction Areas in the U.S.', *Urban Storm Drainage, Proceedings of the International Conference held at the University of Southampton*, ed. P.R. Helliwell, Pentech Press, pp. 556-573.
- Bedient, P.B., Harned, D.A. & Characklis, W.C. 1978, 'Stormwater Analysis and Prediction in Houston', *J Environ Eng Div, Proc Am Soc Civ Eng*, vol. 104, no. EE6, pp. 1087-1100.
- Bedient, P.B., Lambert, J.L. & Springer, N.K. 1980, 'Stormwater Pollutant Load-Runoff Relationships', J Water Pollut Control Fed, vol. 52, no. 9, pp. 2396-2404.
- Bellinger, E.G., Jones, A.D. & Tinker, J. 1982, 'The Character and Dispersal of Motorway Run-off Water', Water Pollut Control, vol. 81, pp. 372-389.
- Bender, G.M. & Terstriep, M.L. 1984, 'Effectiveness of Street Sweeping in Urban Runoff Pollution Control', Sci Total Environ, vol. 33, pp. 185-192.
- Bennett, E.R., Linstedt, K.D., Nilsgard, V., Battaglia, G.M. & Pontius, F.W. 1981, 'Urban Snowmelt Characteristics and Treatment', *J Water Pollut Control Fed*, vol. 53, no. 1, pp. 119-125.
- Betson, R.P. 1978, 'Bulk Precipitation and Streamflow Quality Relationships in an Urban Area', Water Resour Res, vol. 14, no. 6, pp. 1165-1169.
- Bliss, P.J., Brown, J.D. & Perry, R. 1979, 'Impact of Storm Runoff from Urban Areas on Surface Water Quality', *Hydrology and Water Resources Symposium*, Perth, Western Australia, IEAust, pp. 249-253.
- Bomboi, M.T. & Hernandez, A. 1991, 'Hydrocarbons in Urban Runoff: Their Contribution to the Wastewaters', Water Res, vol. 25, no. 5, pp. 557-565.
- Booth, F.T., Vardin, N. & Ball, G.L. 1967, 'Toronto Confronts Outdated Sewers', J Water Pollut Control Fed, vol. 39, no. 9, pp. 1557-1567.
- Brown, R.G. 1984, 'Relationship between Quantity and Quality of Storm Runoff and Various Watershed Characteristics in Minnesota, USA', *Proceedings of the Third International Conference on Urban Storm Drainage*, Goteborg, Sweden, vol. 3, ed. P. Balmer, P. Malmquist & A. Sjoberg, pp. 791-799.

- Brown, R.G. 1988, 'Effects of Precipitation and Land Use on Storm Runoff', Water Resour Bull, vol. 24, no. 2, pp. 421-426.
- Bujon, G., Herremans, L. & Phan, L. 1992, 'FLUPOL: A Forecasting Model for Flow and Pollutant Discharge from Sewerage Systems during Rainfall Events', Water Sci Technol, vol. 25, no. 8, pp. 207-215.
- Burm, R.J., Krawczyk, D.F. & Harlow, G.L. 1968, 'Chemical and Physical Comparison of Combined and Separate Sewer Discharges', *J Water Pollut Control Fed*, vol. 40, no. 1, pp. 112-126.
- Chandra, P., Tripathi, R.D., Rai, U.N., Sinha, S. & Garg, P. 1993, 'Biomonitoring and Amelioration of Nonpoint Source Pollution in some Aquatic Bodies', Water Sci Technol, vol. 28, no. 3-5, pp. 323-326.
- Chiew, F.H.S., Duncan, H.P. & Smith, W. 1997, 'Modelling Pollutant Buildup and Washoff: Keep It Simple', 24th Hydrology and Water Resources Symposium, Auckland, New Zealand, New Zealand Hydrological Society, pp. 131-136.
- Chui, P.C. 1993, 'Urban Runoff Characteristics of a Tropical Watershed', Proceedings of the Sixth International Conference on Urban Storm Drainage, Niagara Falls, Ontario, Canada, vol. 1, ed. J. Marsalek & H.C. Torno, pp. 694-699.
- Chui, T.W., Mar, B.W. & Horner, R.R. 1982, 'Pollutant Loading Model for Highway Runoff', J Environ Eng Div, Proc Am Soc Civ Eng, vol. 108, no. EE6, pp. 1193-1210.
- Cleveland, S., Ramsay, R. & Walters, P. 1970, 'Storm Water Pollution from Urban Land Activity', Storm and Combined Sewer Seminar, Chicago, Federal Water Quality Administration.
- Coleman, T.J. 1993, 'A Comparison of the Modelling of Suspended Solids Using SWMM3 Quality Prediction Algorithms with a Model Based on Sediment Transport Theory', Proceedings of the Sixth International Conference on Urban Storm Drainage, Niagara Falls, Ontario, Canada, vol. 1, ed. J. Marsalek & H.C. Torno, pp. 790-795.
- Collins, P.G. & Ridgway, J.W. 1980, 'Urban Storm Runoff Quality in Southeast Michigan', J Environ Eng Div, Proc Am Soc Civ Eng, vol. 106, no. EE1, pp. 153-162.
- Colston, N.V. & Tafuri, A.N. 1975, 'Urban Land Runoff Considerations', *Urbanization and Water Quality Control*, Rutgers University, New Jersey, ed. W. Whipple, American Water Resources Association, pp. 120-128.
- Cordery, I. 1977, 'Quality Characteristics of Urban Stormwater in Sydney, Australia', Water Resour Res, vol. 13, no. 1, pp. 197-201.
- Cowen, W.F. & Lee, G.F. 1973, 'Leaves as Source of Phosphorus', Environ Sci & Technol, vol. 7, no. 9, pp. 853-854.
- D'Andrea, M. & Maunder, D.E. 1993, 'Characterization of Urban Nonpoint Source Discharges in Metropolitan Toronto', *Proceedings of the Sixth International Conference on Urban Storm Drainage*, Niagara Falls, Ontario, Canada, vol. 1, ed. J. Marsalek & H.C. Torno, pp. 524-530.
- Dally, L.K. 1984, 'Urban Storm Drainage Detention Facilities for Runoff and Water Quality Control', *Proceedings of the Third International Conference on Urban Storm Drainage*, Goteborg, Sweden, vol. 1, ed. P. Balmer, P. Malmquist & A. Sjoberg, pp. 47-56.
- DeFilippi, J.A. & Shih, C.S. 1971, 'Characteristics of Separated Storm and Combined Sewer Flows', J Water Pollut Control Fed, vol. 43, no. 10, pp. 2033-2058.

- Department of Territories 1986, *Pollutant Removal in an Urban Wetland*, National Capital Development Commission, Canberra.
- Desbordes, M. & Servat, E. 1987, 'Transport Model over Urban Catchment Surfaces Regarding TSS, BOD5, and COD', Urban Storm Water Quality, Planning and Management, Proceedings of the Fourth International Conference on Urban Storm Drainage, Lausanne, Switzerland, ed. W. Gujer & V. Krejci, pp. 75-76.
- Deutsch, J.C. & Hemain, J.C. 1984, 'Main Results of the French National Programme of Urban Runoff Quality Measurement', *Proceedings of the Third International Conference on Urban Storm Drainage*, Goteborg, Sweden, vol. 3, ed. P. Balmer, P. Malmquist & A. Sjoberg, pp. 939-946.
- Di Toro, D.M. 1984, 'Probability Model of Stream Quality Due to Runoff', J Environ Eng, vol. 110, no. 3, pp. 607-628.
- Dorney, J.R. 1986, 'Leachable and Total Phosphorus in Urban Street Tree Leaves', Water Air Soil Pollut, vol. 28, pp. 439-443.
- Driscoll, E.D. 1986, 'Lognormality of Point and Non-Point Source Pollutant Concentrations', Urban Runoff Quality Impact and Quality Enhancement Technology, Proceedings of an Engineering Foundation Conference, New Hampshire, ed. B. Urbonas & L.A. Roesner, ASCE, pp. 438-458.
- Driver, N.E. & Troutman, B.M. 1989, 'Regression Models for Estimating Urban Storm-Runoff Quality and Quantity in the United States', *J Hydrol*, vol. 109, pp. 221-236.
- Duda, A.M., Lenat, D.R. & Penrose, D.L. 1982, 'Water Quality in Urban Streams What We Can Expect', J Water Pollut Control Fed, vol. 54, no. 7, pp. 1139-1147.
- Dugan, G.L. 1981, 'Variations in Urban Water Quality Runoff During Storm Events', Urban Stormwater Quality, Management, and Planning, Proceedings of the Second International Conference on Urban Storm Drainage, Urbana, Illinois, ed. B.C. Yen, Water Resources Publications, Colorado, pp. 59-68.
- Duncan, H.P. 1995, A Review of Urban Storm Water Quality Processes, Cooperative Research Centre for Catchment Hydrology, Melbourne, Report 95/9.
- Eaton, A.D., Clesceri, L.S. & Greenberg, A.E. (ed.) 1995, Standard Methods for the Examination of Water and Wastewater, 19th edn, APHA, AWWA, WEF, Washington, DC.
- Eganhouse, R.P. & Kaplan, I.R. 1981, 'Extractable Organic Matter in Urban Stormwater Runoff. 1. Transport Dynamics and Mass Emission Rates', *Environ Sci & Technol*, vol. 15, no. 3, pp. 310-315.
- Ellis, J.B. 1979, 'The Nature and Sources of Urban Sediments and Their Relation to Water Quality: A Case Study from North-west London', in *Man's Impact on the Hydrological Cycle in the United Kingdom*, ed. G.E. Hollis, Geo Abstracts Ltd, Norwich, pp. 199-216.
- Ellis, J.B., Hamilton, R. & Roberts, A.H. 1981, 'Composition of Suspended Solids in Urban Stormwater', Urban Stormwater Quality, Management, and Planning, Proceedings of the Second International Conference on Urban Storm Drainage, Urbana, Illinois, ed. B.C. Yen, Water Resources Publications, Colorado, pp. 184-190.
- Ellis, J.B., Revitt, D.M., Harrop, D.O. & Beckwith, P.R. 1987, 'The Contribution of Highway Surfaces to Urban Stormwater Sediments and Metal Loadings', *Sci Total Environ*, vol. 59, pp. 339-349.
- Ferrara, R.A. & Witkowski, P. 1983, 'Stormwater Quality Characteristics in Detention Basins', *J Environ Eng*, vol. 109, no. 2, pp. 428-447.

- Finnemore, E.J. & Lynard, W.G. 1982, 'Management and Control Technology for Urban Stormwater Pollution', *J Water Pollut Control Fed*, vol. 54, no. 7, pp. 1097-1111.
- Flores-Rodriguez, J., Bussy, A. & Thevenot, D.R. 1993, 'Toxic Metals in Urban Runoff: Physico-Chemical Mobility Assessment Using Speciation Schemes', *Proceedings of the Sixth International Conference on Urban Storm Drainage*, Niagara Falls, Ontario, Canada, vol. 1, ed. J. Marsalek & H.C. Torno, pp. 182-187.
- Forster, J. 1990, 'Roof Runoff: A Source of Pollutants in Urban Storm Drainage Systems?', Proceedings of the Fifth International Conference on Urban Storm Drainage, Osaka, Japan, vol. 1, ed. Y. Iwasa & T. Sueishi, pp. 469-474.
- Gannon, J.J. & Busse, M.K. 1989, 'E. Coli and Enterococci Levels in Urban Stormwater, River Water, and Chlorinated Treatment Plant Effluent', Water Res, vol. 23, no. 9, pp. 1167-1176.
- Geldreich, E.E., Best, L.C., Kenner, B.A. & Van Donsel, D.J. 1968, 'The Bacteriological Aspects of Stormwater Pollution', *J Water Pollut Control Fed*, vol. 40, no. 11, pp. 1861-1872.
- Gjessing, E., Lygren, E., Berglind, L., Gulbrandsen, T. & Skaane, R. 1984, 'Effect of Highway Runoff on Lake Water Quality', Sci Total Environ, vol. 33, pp. 245-257.
- Goettle, A. 1978, 'Atmospheric Contaminants, Fallout, and Their Effects on Storm Water Quality', *Prog Water Technol*, vol. 10, no. 5/6, pp. 455-467.
- Good, J.C. 1993, 'Roof Runoff as a Diffuse Source of Metals and Aquatic Toxicity in Storm Water', Water Sci Technol, vol. 28, no. 3-5, pp. 317-321.
- Green, D. 1993, 'Stormwater Discharges from Industrial Sectors in Ontario under the MISA (Municipal-Industrial Strategy for Abatement) Program', Proceedings of the Sixth International Conference on Urban Storm Drainage, Niagara Falls, Ontario, Canada, vol. 2, ed. J. Marsalek & H.C. Tomo, pp. 1695-1701.
- Griffin, D.M., Grizzard, T.J., Randall, C.W., Helsel, D.R. & Hartigan, J.P. 1980, 'Analysis of Non-Point Pollution Export from Small Catchments', *J Water Pollut Control Fed*, vol. 52, no. 4, pp. 781-790.
- Grizzard, T.J., Randall, C.W., Weand, B.L. & Ellis, K.L. 1986, 'Effectiveness of Extended Detention Ponds', Urban Runoff Quality Impact and Quality Enhancement Technology, Proceedings of an Engineering Foundation Conference, New Hampshire, ed. B. Urbonas & L.A. Roesner, ASCE, pp. 323-337.
- Grottker, M. 1987, 'Runoff Quality from a Street with Medium Traffic Loading', Sci Total Environ, vol. 59, pp. 457-466.
- Gutteridge Haskins and Davey et al. 1981, Characterisation of Pollution in Urban Stormwater Runoff, Australian Water Resources Council, Canberra, AWRC Technical Paper No. 60.
- Hajas, L., Boggs, D.B., Shuckrow, A.J. & Quimpo, R.G. 1978, 'Projecting Urban Runoff Flows and Loads', *J Environ Eng Div, Proc Am Soc Civ Eng*, vol. 104, no. EE6, pp. 1149-1163.
- Hall, K.J. & Anderson, B.C. 1988, 'The Toxicity and Chemical Composition of Urban Stormwater Runoff', Can J Civ Eng, vol. 15, pp. 98-106.
- Halverson, H.G., DeWalle, D.R. & Sharpe, W.E. 1984, 'Contribution of Precipitation to Quality of Urban Storm Runoff', Water Resour Bull, vol. 20, no. 6, pp. 859-864.

- Hamilton, R.S., Revitt, D.M., Warren, R.S. & Duggan, M.J. 1987, 'Metal Mass Balance Studies within a Small Highway Dominated Catchment', *Sci Total Environ*, vol. 59, pp. 365-368.
- Hanrahan, D. & Fagen, J. 1987, 'Control of Stormwater Pollution at Lake Ginninderra, ACT.', Urban Runoff Water Quality, Sydney, IEAust & AWWA.
- Hartigan, J.P., Quasebarth, T.F. & Southerland, E. 1983, 'Calibration of NPS Model Loading Factors', *J Environ Eng*, vol. 109, no. 6, pp. 1259-1272.
- Helsel, D.R., Kim, J.L., Grizzard, T.J., Randall, C.W. & Hoehn, R.C. 1979, 'Land Use Influences on Metals in Storm Drainage', *J Water Pollut Control Fed*, vol. 51, no. 4, pp. 709-717.
- Henley, D.A., Keiller, D.C. & Downing, A.L. 1980, 'Effects of Nutrients on Algal Growth in Waters of the Canberra Region and Related Control Measures', Water Pollut Control, vol. 79, pp. 195-212.
- Hoffman, E.J., Latimer, J.S., Hunt, C.D., Mills, G.L. & Quinn, J.G. 1985, 'Stormwater Runoff from Highways', Water Air Soil Pollut, vol. 25, pp. 349-364.
- Hoffman, E.J., Latimer, J.S., Mills, G.L. & Quinn, J.G. 1982, 'Petroleum Hydrocarbons in Urban Runoff from a Commercial Land Use Area', *J Water Pollut Control Fed*, vol. 54, no. 11, pp. 1517-1525.
- Holler, J.D. 1989, 'Storm Water Detention Basin Nutrient Removal Efficiency', J Water Resour Plann Manage, vol. 115, no. 1, pp. 52-63.
- Horkeby, B. & Malmquist, P. 1977, 'Microsubstances in Urban Storm Water', Effects of Urbanization and Industrialization on the Hydrological Regime and on Water Quality, Proceedings of the Amsterdam Symposium, pp. 252-264.
- Huber, W.C., Heaney, J.P., Smolenyak, K.J. & Aggidis, D.A. 1979, *Urban Rainfall Runoff Quality Data Base*, *Update with Statistical Analysis*, University of Florida, Gainesville, EPA-600/8-79-004.
- Hudson, N. 1971, Soil Conservation, 2 edn, B T Batsford Ltd, London.
- Hunter, J.V., Sabatino, T., Gomperts, R. & MacKenzie, M.J. 1979, 'Contribution of Urban Runoff to Hydrocarbon Pollution', *J Water Pollut Control Fed*, vol. 51, no. 8, pp. 2129-2138.
- Hvitved-Jacobsen, T., Keiding, K. & Yousef, Y.A. 1987, 'Urban Runoff Pollutant Removal in Wet Detention Ponds', *Urban Storm Water Quality, Planning and Management, Proceedings of the Fourth International Conference on Urban Storm Drainage*, Lausanne, Switzerland, ed. W. Gujer & V. Krejci, pp. 137-142.
- Hvitved-Jacobsen, T., Yousef, Y.A., Wanielista, M.P. & Pearce, D.B. 1984, 'Fate of Phosphorus and Nitrogen in Ponds Receiving Highway Runoff', *Sci Total Environ*, vol. 33, pp. 259-270.
- Ichiki, A., Yamada, K. & Nakade, Y. 1993, 'Study on Quantification and Management of Runoff Pollutants from Nonpoint Sources in Urban Area', *Proceedings of the Sixth International Conference on Urban Storm Drainage*, Niagara Falls, Ontario, Canada, vol. 1, ed. J. Marsalek & H.C. Torno, pp. 537-542.
- Ishaq, A.M. 1992, 'Surface and Subsurface Drainage of Metropolitan City in Arid Zone', J. Irrig Drain Eng, vol. 118, no. 1, pp. 19-35.

- Ishaq, A.M. & Khararjian, H.A. 1988, 'Stormwater Harvesting in the Urban Watersheds of Arid Zones', Water Resour Bull, vol. 24, no. 6, pp. 1227-1235.
- Ishaq, A.M. & Khararjian, H.A. 1990, 'Stormwater Harvesting in the Urban Watersheds in Saudi Arabia', *Proceedings of the Fifth International Conference on Urban Storm Drainage*, Osaka, Japan, vol. 3, ed. Y. Iwasa & T. Sueishi, pp. 1539-1548.
- James, W. & Shivalingaiah, B. 1986, 'Continuous Mass Balance of Pollutant Build-up Processes', in *Urban Runoff Pollution*, vol. G10, ed. H.C. Torno, J. Marsalek & M. Desbordes, Springer-Verlag, Berlin, pp. 243-271.
- Jassby, A.D., Reuter, J.E., Axler, R.P., Goldman, C.R. & Hackley, S.H. 1994, 'Atmospheric Deposition of Nitrogen and Phosphorus in the Annual Nutrient Load of Lake Tahoe (California-Nevada)', Water Resour Res, vol. 30, no. 7, pp. 2207-2216.
- Klein, L.A., Lang, M., Nash, N. & Kirschner, S.L. 1974, 'Sources of Metals in New York City Wastewater', J Water Pollut Control Fed, vol. 46, no. 12, pp. 2653-2662.
- Kluesener, J.W. & Lee, G.F. 1974, 'Nutrient Loading from a Separate Storm Sewer in Madison, Wisconsin', *J Water Pollut Control Fed*, vol. 46, no. 5, pp. 920-936.
- Konno, H. & Nonomura, S. 1981, 'Sediment Discharge on Land Grading Areas in Kohoku, Japan', Urban Stormwater Quality, Management, and Planning, Proceedings of the Second International Conference on Urban Storm Drainage, Urbana, Illinois, ed. B.C. Yen, Water Resources Publications, Colorado, pp. 209-217.
- Kuo, J.T., Yan, Y.L. & Li, K.C. 1993, 'A Simplified Computer Model for Nonpoint Source Pollution in a Small Urban Area', Water Sci Technol, vol. 28, no. 3-5, pp. 701-706.
- LaBarre, N., Milne, J.B. & Oliver, B.G. 1973, 'Lead Contamination of Snow', Water Res, vol. 7, pp. 1215-1218.
- Lammersen, R. 1993, 'The Effect of an Urban Drainage System on Receiving Water Quality', Proceedings of the Sixth International Conference on Urban Storm Drainage, Niagara Falls, Ontario, Canada, vol. 1, ed. J. Marsalek & H.C. Torno, pp. 206-211.
- Lindholm, O. & Balmer, P. 1978, 'Pollution in Storm Runoff and Combined Sewer Overflows', Urban Storm Drainage, Proceedings of the International Conference held at the University of Southampton, Southampton, ed. P.R. Helliwell, Pentech Press, London, pp. 575-585.
- Loehr, R.C. 1974, 'Characteristics and Comparative Magnitude of Non Point Sources', J Water Pollut Control Fed, vol. 46, no. 8, pp. 1849-1872.
- MacKenzie, M.J. & Hunter, J.V. 1979, 'Sources and Fates of Aromatic Compounds in Urban Stormwater Runoff', *Environ Sci & Technol*, vol. 13, no. 2, pp. 179-183.
- Makepeace, D.K., Smith, D.W. & Stanley, S.J. 1995, 'Urban Stormwater Quality: Summary of Contaminant Data', Crit Rev Environ Sci Technol, vol. 25, no. 2, pp. 93-139.
- Malmquist, P. & Hard, S. 1981, 'Groundwater Quality Changes Caused by Stormwater Infiltration', *Urban Stormwater Quality, Management, and Planning, Proceedings of the Second International Conference on Urban Storm Drainage*, Urbana, Illinois, ed. B.C. Yen, Water Resources Publications, Colorado, pp. 89-97.
- Malmquist, P. & Svensson, G. 1977, 'Urban Storm Water Pollutant Sources', Effects of Urbanization and Industrialization on the Hydrological Regime and on Water Quality, Proceedings of the Amsterdam Symposium, pp. 31-38.

- Mance, G. & Harman, M.M.I. 1978, 'The Quality of Urban Storm-Water Runoff', Urban Storm Drainage, Proceedings of the International Conference held at the University of Southampton, Southampton, ed. P.R. Helliwell, Pentech Press, London, pp. 603-617.
- Marsalek, J. 1990, 'Evaluation of Pollutant Loads from Urban Nonpoint Sources', Water Sci Technol, vol. 22, no. 10/11, pp. 23-30.
- Marsalek, J. 1991, 'Pollutant Loads in Urban Stormwater: Review of Methods for Planning-Level Estimates', Water Resour Bull, vol. 27, no. 2, pp. 283-291.
- Martin, E.H. 1988, 'Effectiveness of an Urban Runoff Detention Pond-Wetlands System', J Environ Eng, vol. 114, no. 4, pp. 810-827.
- Martin, E.H. & Miller, R.A. 1987, 'Efficiency of an Urban Stormwater Detention System', Urban Storm Water Quality, Planning and Management, Proceedings of the Fourth International Conference on Urban Storm Drainage, Lausanne, Switzerland, ed. W. Gujer & V. Krejci, pp. 143-148.
- McElroy, F.T.R. & Bell, J.M. 1974, Stormwater Runoff Quality for Urban and Semi-Urban/Rural Watersheds, Purdue University, West Lafayette, Indiana, PB 231 482.
- McKee, H.S. 1962, Nitrogen Metabolism in Plants, Clarendon Press, Oxford, England.
- McNamara, R. & Cowell, R. 1987, 'Urban Runoff Water Quality at Penrith', *Urban Runoff Water Quality*, Sydney, IEAust & AWWA.
- Meadows, M.E., Weeter, D.W. & Green, J.M. 1978, 'Assessing Nonpoint Water Quality for Small Streams', *J Environ Eng Div, Proc Am Soc Civ Eng*, vol. 104, no. EE6, pp. 1119-1133.
- Meister, J.F. & Kefer, S. 1981, 'Stormwater Quality from an Urbanising Watershed', Urban Stormwater Quality, Management, and Planning, Proceedings of the Second International Conference on Urban Storm Drainage, Urbana, Illinois, ed. B.C. Yen, Water Resources Publications, Colorado, pp. 69-78.
- Melanen, M.J. 1984, 'Collection and Analysis of Urban Runoff Data in Finland', Water Sci Technol, vol. 17, pp. 1175-1185.
- Morrison, G.M.P., Revitt, D.M., Ellis, J.B., Svensson, G. & Balmer, P. 1984, 'The Physico-Chemical Speciation of Zinc, Cadmium, Lead and Copper in Urban Stormwater', *Proceedings of the Third International Conference on Urban Storm Drainage*, Goteborg, Sweden, vol. 3, ed. P. Balmer, P. Malmquist & A. Sjoberg, pp. 989-1000.
- Murakami, T. & Nakamura, E. 1990, 'Heavy Metal Characteristics of Stormwater Runoff', Proceedings of the Fifth International Conference on Urban Storm Drainage, Osaka, Japan, vol. 1, ed. Y. Iwasa & T. Sueishi, pp. 433-438.
- Nebraska University 1974, Water Quality Models for Urban and Suburban Areas, Office of Water Research and Technology, Lincoln, PB 238 622.
- Ng, H.Y.F. 1987, 'Rainwater Contribution to the Dissolved Chemistry of Storm Runoff', Urban Storm Water Quality, Planning and Management, Proceedings of the Fourth International Conference on Urban Storm Drainage, Lausanne, Switzerland, ed. W. Gujer & V. Krejci, pp. 21-26.
- Ng, H.Y.F. & Marsalek, J. 1984, 'Effects of Rainwater Composition on Urban Runoff Quality', Water Quality Evolution Within the Hydrological Cycle of Watersheds, Proceedings of the Canadian Hydrology Symposium No 15, Quebec, Canada, vol. 2, pp. 881-894.

- Ngo, H.H., Bovis, A.M. & O'Loughlin, G.G. 1992, 'Sampling of Stormwater Water Quality in Two Sydney Creeks', *International Symposium on Urban Stormwater Management*, Sydney, pp. 124-128.
- Nicholls, K.H. & Cox, C.M. 1978, 'Atmospheric Nitrogen and Phosphorus Loading to Harp Lake, Ontario, Canada', Water Resour Res, vol. 14, no. 4, pp. 589-592.
- Novotny, V. & Kincaid, G.W. 1981, 'Acidity of Urban Precipitation and its Buffering During Overland Flow', *Urban Stormwater Quality, Management, and Planning, Proceedings of the Second International Conference on Urban Storm Drainage*, Urbana, Illinois, ed. B.C. Yen, Water Resources Publications, Colorado, pp. 1-9.
- Novotny, V., Sung, H.-M., Bannerman, R. & Baum, K. 1985, 'Estimating Nonpoint Pollution from Small Urban Watersheds', *J Water Pollut Control Fed*, vol. 57, no. 4, pp. 339-348.
- O'Shea, M.L. & Field, R. 1992, 'Detection and Disinfection of Pathogens in Storm-Generated Flows', *Can J Microbiol*, vol. 38, pp. 267-276.
- Oliver, B.G., Milne, J.B. & LaBarre, N. 1974, 'Chloride and Lead in Urban Snow', J Water Pollut Control Fed, vol. 46, no. 4, pp. 767-771.
- Oliver, L.J. & Grigoropoulos, S.G. 1981, 'Control of Storm-Generated Pollution Using a Small Urban Lake', J Water Pollut Control Fed, vol. 53, no. 5, pp. 594-603.
- Olivieri, V.P., Kawata, K. & Kruse, C.W. 1978, 'Relationship between Indicator Organisms and Selected Pathogenic Bacteria in Urban Waterways', *Prog Water Technol*, vol. 10, no. 5/6, pp. 361-379.
- Ostry, R.C. 1982, 'Relationship of Water Quality and Pollutant Loads to Land Uses in Adjoining Catchments', Water Resour Bull, vol. 18, no. 1, pp. 99-104.
- Owe, M., Craul, P.J. & Halverson, H.G. 1982, 'Contaminant Levels in Precipitation and Urban Surface Runoff', Water Resour Bull, vol. 18, no. 5, pp. 863-868.
- Palmer, C.L. 1950, 'The Pollutional Effects of Storm-Water Overflows from Combined Sewers', Sewage & Ind Wastes, vol. 22, no. 2, pp. 154-165.
- Palmer, C.L. 1963, 'Feasibility of Combined Sewer Systems', J Water Pollut Control Fed, vol. 35, no. 2, pp. 162-167.
- Palmgren, T. & Bennerstedt, K. 1984, 'Heavy Metals in Stormwater Content and Sources', Proceedings of the Third International Conference on Urban Storm Drainage, Goteborg, Sweden, vol. 3, ed. P. Balmer, P. Malmquist & A. Sjoberg, pp. 919-928.
- Pisano, M.A. 1976, 'Nonpoint Sources of Pollution: A Federal Perspective', J Environ Eng Div, Proc Am Soc Civ Eng, vol. 102, no. EE3, pp. 555-565.
- Pitt, R. 1979, Demonstration of Nonpoint Pollution Abatement Through Improved Street Cleaning Practices, United States Environmental Protection Agency, Cincinnati, EPA-600/2-79-161.
- Polls, I. & Lanyon, R. 1980, 'Pollutant Concentrations from Homogenous Land Uses', J Environ Eng Div, Proc Am Soc Civ Eng, vol. 106, no. EE1, pp. 69-80.
- Preul, H.C. & Ruszkowski, J.A. 1987, 'Storm Drainage Detention Basin Sediment Removal Model', Urban Storm Water Quality, Planning and Management, Proceedings of the Fourth International Conference on Urban Storm Drainage, Lausanne, Switzerland, ed. W. Gujer & V. Krejci, pp. 197-198.

- Price, R.K. & Mance, G. 1978, 'A Suspended Solids Model for Storm Water Runoff', Urban Storm Drainage, Proceedings of the International Conference held at the University of Southampton, ed. P.R. Helliwell, Pentech Press, pp. 546-555.
- Quek, U. & Forster, J. 1993, 'Trace Metals in Roof Runoff', Water Air Soil Pollut, vol. 68, pp. 373-389.
- Qureshi, A.A. & Dutka, B.J. 1979, 'Microbiological Studies on the Quality of Urban Stormwater Runoff in Southern Ontario, Canada', Water Res, vol. 13, pp. 977-985.
- Randall, C.W., Garland, J.A., Grizzard, T.J. & Hoehn, R.C. 1975, 'Characterization of Urban Runoff in the Occoquan Watershed of Virginia', *Urbanization and Water Quality Control*, Rutgers University, New Jersey, ed. W. Whipple, American Water Resources Association, pp. 62-69.
- Randall, C.W., Garland, J.A., Grizzard, T.J. & Hoehn, R.C. 1977, 'The Significance of Stormwater Runoff in an Urbanizing Watershed', *Prog Water Technol*, vol. 9, pp. 547-562.
- Reinertsen, T.R. 1981, 'Quality of Stormwater Runoff from Streets', Urban Stormwater Quality, Management, and Planning, Proceedings of the Second International Conference on Urban Storm Drainage, Urbana, Illinois, ed. B.C. Yen, Water Resources Publications, Colorado, pp. 107-115.
- Rinella, J.F. & McKenzie, S.W. 1982, 'Determining the Settling of Suspended Chemicals', Stormwater Detention Facilities Planning, Design, Operation, and Maintenance, Henniker, New Hampshire, ed. W. DeGroot, ASCE, pp. 401-408.
- Roberts, A.H., Ellis, J.B. & Whalley, W.B. 1988, 'The Progressive Alteration of Fine Sediment along an Urban Storm Drain', Water Res, vol. 22, no. 6, pp. 775-781.
- Roberts, P.V., Dauber, L., Novak, B. & Zobrist, J. 1977, 'Pollutant Loadings in Urban Storm Water', *Prog Water Technol*, vol. 8, no. 6, pp. 93-101.
- Sartor, J.D. & Boyd, G.B. 1972, Water Pollution Aspects of Street Surface Contaminants, United States Environmental Protection Agency, Washington, D.C., EPA-R2-72-081.
- Schlossnagle, G.W., Luginbyhl, J.W., Overton, D.E. & Minear, R.A. 1981, 'Airport Stormwater Runoff Characterization', *Urban Stormwater Quality, Management, and Planning, Proceedings of the Second International Conference on Urban Storm Drainage*, Urbana, Illinois, ed. B.C. Yen, Water Resources Publications, Colorado, pp. 125-132.
- Sear, T.R. & Bays, J. 1991, 'Environmental Assessment of Lake Maggiore, St. Petersburg, Florida', Water Resources Planning and Management and Urban Water Resources, Proceedings of the 18th Annual Conference and Symposium, New Orleans, Louisiana, ed. J.L. Anderson, American Society of Civil Engineers, pp. 168-172.
- Sekine, M., Ukita, M. & Nakanishi, H. 1990, 'Study of Nutrient Behaviour in Storm Water Using Mathematical Programming Method', *Proceedings of the Fifth International Conference on Urban Storm Drainage*, Osaka, Japan, vol. 1, ed. Y. Iwasa & T. Sueishi, pp. 397-402.
- Sharpin, M.G. 1993, 'Hydrological Variability, Urbanisation and Water Quality in Australia', Proceedings of the Sixth International Conference on Urban Storm Drainage, Niagara Falls, Ontario, Canada, vol. 1, ed. J. Marsalek & H.C. Torno, pp. 543-548.
- Sharpin, M.G. 1995, 'Stormwater Quality Characteristics from Urban and Non-Urban Catchments in South-Eastern Australia', AWWA 16th Federal Convention, Darling Harbour, Sydney, Australia, vol. 2, Australian Water and Wastewater Association, pp. 389-395.

- Shelley, P.E., Driscoll, E.D. & Sartor, J.D. 1987, 'Probabilistic Characterization of Pollutant Discharges from Highway Stormwater Runoff', Sci Total Environ, vol. 59, pp. 401-410.
- Shelley, P.E. & Gaboury, D.R. 1986, 'Estimation of Pollution from Highway Runoff Initial Results', Urban Runoff Quality Impact and Quality Enhancement Technology, Proceedings of an Engineering Foundation Conference, New Hampshire, ed. B. Urbonas & L.A. Roesner, ASCE, pp. 459-473.
- Shigorin, G.G. 1956, 'The Problem of City Surface Run-Off Water', Vodosnabzhenie i Sanitarnaya Tekhnika, vol. 2, no. 19.
- Sim, R.L. & Webster, J.L. 1992, 'Performance of Trash Rack on Cup and Saucer Creek Stormwater Channel', *International Symposium on Urban Stormwater Management*, Sydney, pp. 143-145.
- Sim, R.L., White, M.J., O'Loughlin, G.G. & Cattell, F.C.R. 1993, 'Stormwater Pollution Investigations on Cup & Saucer Creek, Sydney', *Proceedings of the Sixth International Conference on Urban Storm Drainage*, Niagara Falls, Ontario, Canada, vol. 1, ed. J. Marsalek & H.C. Torno, pp. 549-554.
- Simpson, D.E. & Hemens, J. 1978, 'Nutrient Budget for a Residential Stormwater Catchment in Durban, South Africa.', *Prog Water Technol*, vol. 10, no. 5/6, pp. 631-643.
- Smalls, I 1986, 'Stormwater Runoff and Some Environmental Implications in the Sydney Region', Stormwater Quality in Urban Areas, Wollongong, Water Research Foundation of Australia, pp. 6-1 6-13.
- Smalls, I. 1987, 'Sources and Availability of Phosphorus in Urban Runoff in the Sydney Region', *Urban Runoff Water Quality*, Sydney, IEAust & AWWA.
- Soderlund, G. & Lehtinen, H. 1972, 'Comparison of Discharges from Urban Storm-water Run-off, Mixed Storm Overflow and Treated Sewage', Advances in Water Pollution Research, Proceedings of the Sixth International Conference, Jerusalem, ed. S.H. Jenkins, Pergamon Press, pp. 309-325.
- Sriananthakumar, K. & Codner, G.P. 1992, 'Factors Affecting Pollutant Washoff Decay Coefficient in Urban Catchments', *International Symposium on Urban Stormwater Management*, Sydney, Australia, pp. 390-395.
- Stenstrom, M.K., Silverman, G.S. & Bursztynsky, T.A. 1984, 'Oil and Grease in Urban Stormwaters', *J Environ Eng*, vol. 110, no. 1, pp. 58-72.
- Stotz, G. 1987, 'Investigations of the Properties of the Surface Water Run-off from Federal Highways in the FRG', Sci Total Environ, vol. 59, pp. 329-337.
- Strecker, E.W., Driscoll, E.D., Shelley, P.E. & Gaboury, D.R. 1987, 'Characterization of Pollutant Loadings from Highway Runoff in the USA', Urban Storm Water Quality, Planning and Management, Proceedings of the Fourth International Conference on Urban Storm Drainage, Lausanne, Switzerland, ed. W. Gujer & V. Krejci, pp. 85-90.
- Strecker, E.W., Kersnar, J.M., Driscoll, E.D. & Horner, R.R. 1992, The Use of Wetlands for Controlling Stormwater Pollution, Terrene Institute, Washington, DC.
- Swanson, P. 1992, 'A Trial Wetland System for Urban Runoff Treatment in the Blue Mountains of New South Wales', Wetlands Downunder, Wetland Systems in Water Pollution Control, Sydney, Australia.
- Swanson, P. 1994, Performance Evaluation of a Constructed Wetland for Urban Runoff Treatment, Australian Water Technologies, for the (Sydney) Water Board, Sydney, 92/70.

- Tan, H.T.H. 1992, 'Relationships of Nutrients in Stormwater Drains to Urban Catchment Attributes in Perth', *International Symposium on Urban Stormwater Management*, Sydney, pp. 137-142.
- Thomas, P.R. & Greene, G.R. 1993, 'Rainwater Quality from Different Roof Catchments', Water Sci Technol, vol. 28, no. 3-5, pp. 291-299.
- Torno, H.C. 1984, 'The Nationwide Urban Runoff Program', Proceedings of the Third International Conference on Urban Storm Drainage, Goteborg, Sweden, vol. 4, ed. P. Balmer, P. Malmquist & A. Sjoberg, pp. 1465-1474.
- Urbonas, B. 1991, 'Summary of Stormwater Quality Management Practices', Water Resources Planning and Management and Urban Water Resources, Proceedings of the 18th Annual Conference and Symposium, New Orleans, Louisiana, ed. J.L. Anderson, American Society of Civil Engineers, pp. 333-337.
- Van den Berg, J.A., de Jong, J. & Schultz, E. 1977, 'Some Qualitative and Quantitative Aspects of Surface Water in an Urban Area with Separate Storm Water and Waste Water Sewer Systems', Effects of Urbanization and Industrialization on the Hydrological Regime and on Water Quality, Proceedings of the Amsterdam Symposium, pp. 109-123.
- Wada, Y. & Miura, H. 1984, 'Quantification of Water Quality of Urban Storm Drainage and Modelling Runoff Loads', Proceedings of the Third International Conference on Urban Storm Drainage, Goteborg, Sweden, vol. 3, ed. P. Balmer, P. Malmquist & A. Sjoberg, pp. 969-978.
- Wakeham, S.G. 1977, 'A Characterization of the Sources of Petroleum Hydrocarbons in Lake Washington', J Water Pollut Control Fed, vol. 49, no. 7, pp. 1680-1687.
- Walesh, S.G. 1986, 'Case Studies of Need-Based Quality-Quantity Control Projects', Urban Runoff Quality Impact and Quality Enhancement Technology, Proceedings of an Engineering Foundation Conference, New Hampshire, ed. B. Urbonas & L.A. Roesner, ASCE, pp. 423-437.
- Walesh, S.G. 1989, Urban Surface Water Management, John Wiley & Sons, Inc.
- Waller, D.H. & Novak, Z. 1981, 'Pollution Loading to the Great Lakes from Municipal Sources in Ontario', J Water Pollut Control Fed, vol. 53, no. 3, pp. 387-397.
- Weibel, S.R., Anderson, R.J. & Woodward, R.L. 1964, 'Urban Land Runoff as a Factor in Stream Pollution', J Water Pollut Control Fed, vol. 36, no. 7, pp. 915-924.
- Weibel, S.R., Weidner, R.B., Christianson, A.G. & Anderson, R.J. 1966, 'Characterization, Treatment, and Disposal of Urban Stormwater', Advances in Water Pollution Research, Proceedings of the Third International Conference, Munich, vol. 1, Water Pollution Control Federation, pp. 329-352.
- Whipple, W. & Hunter, J.V. 1979, 'Petroleum Hydrocarbons in Urban Runoff', Water Resour Bull, vol. 15, no. 4, pp. 1096-1105.
- Whipple, W., Hunter, J.V. & Yu, S.L. 1974, 'Unrecorded Pollution from Urban Runoff', J. Water Pollut Control Fed, vol. 46, no. 5, pp. 873-885.
- Whiteley, H.R., Licsko, Z.J. & Corsi, R.L. 1993, 'Quality of Stormwater from Residential Areas in Guelph, Ontario, Canada', *Proceedings of the Sixth International Conference on Urban Storm Drainage*, Niagara Falls, Ontario, Canada, vol. 1, ed. J. Marsalek & H.C. Torno, pp. 531-536.
- Wilber, W.G. & Hunter, J.V. 1977, 'Aquatic Transport of Heavy Metals in the Urban Environment', Water Resour Bull, vol. 13, no. 4, pp. 721-734.

- Wilber, W.G., Hunter, J.V. & Balmat, J. 1980, 'Zinc in Urban Storm- and Wastewaters', in Zinc in the Environment, ed. J.O. Nriagu, John Wiley & Sons, New York, pp. 230-266.
- Wilkinson, R. 1954, 'The Quality of Rainfall Runoff Water from a Housing Estate', J Inst Public Health Eng.
- World Health Organization 1984, Guidelines for Drinking Water Quality, vol. 1 and 2, Geneva.
- Wright, A. 1993, 'The Effect of Third World Type Urbanization on Stormwater Quality in Khayelitsha, South Africa', *Proceedings of the Sixth International Conference on Urban Storm Drainage*, Niagara Falls, Ontario, Canada, vol. 1, ed. J. Marsalek & H.C. Torno, pp. 665-669.
- Wu, J.S., Holman, R. & Dorney, J. 1988, 'Water Quality Study on Urban Wet Detention Ponds', Design of Urban Runoff Quality Controls, Proceedings of an Engineering Foundation Conference on Current Practice and Design Criteria for Urban Quality Control, Potosi, Missouri, ed. L.A. Roesner, B. Urbonas & M.B. Sonnen, ASCE, pp. 280-289.
- Xanthopoulos, C. & Hahn, H.H. 1993, 'Anthropogenic Pollutants Wash-off from Street Surfaces', Proceedings of the Sixth International Conference on Urban Storm Drainage, Niagara Falls, Ontario, Canada, vol. 1, ed. J. Marsalek & H.C. Torno, pp. 417-422.
- Yassini, I. & Clarke, A. 1986, 'Aspects of Urban Stormwater Pollution of Lake Illawarra', Stormwater Quality in Urban Areas, Wollongong, Water Research Foundation of Australia, pp. 3-1 3.40.
- Yaziz, M.L, Gunting, H., Sapari, N. & Ghazali, A.W. 1989, 'Variations in Rainwater Quality from Roof Catchments', Water Res, vol. 23, no. 6, pp. 761-765.
- Yousef, Y.A., Harper, H.H., Wiseman, L.P. & Bateman, J.M. 1985, 'Consequential Species of Heavy Metals in Highway Runoff', *Transp Res Rec*, no. 1017, pp. 56-62.
- Yousef, Y.A., Hvitved-Jacobsen, T., Wanielista, M.P. & Tolbert, R.D. 1986a, 'Nutrient Transformation in Retention/Detention Ponds Receiving Highway Runoff', *J Water Pollut Control Fed*, vol. 58, no. 8, pp. 838-844.
- Yousef, Y.A., Wanielista, M.P. & Harper, H.H. 1986b, 'Design and Effectiveness of Urban Detention Basins', *Urban Runoff Quality Impact and Quality Enhancement Technology, Proceedings of an Engineering Foundation Conference*, New Hampshire, ed. B. Urbonas & L.A. Roesner, ASCE, pp. 338-350.
- Zhen-Ren, G., Huei-Min, Y. & Huaisheng, C. 1993, 'Water Quality of Initial Runoff of Storm in Urban Areas in South China: Experiments', Proceedings of the Sixth International Conference on Urban Storm Drainage, Niagara Falls, Ontario, Canada, vol. 1, ed. J. Marsalek & H.C. Torno, pp. 670-675.

APPENDIX A

Data

Table A1 Land use and concentration data

Table A2 Key to references

The data set used in this study is listed to permit cross-checking and extension of the analysis. Due to space constraints it is presented in an abbreviated form, and much descriptive information has been omitted. The data set has been collated specifically for this study, and has been structured to fit the three way system of grouping variables described in the body of the report. A complete listing of source references is provided.

Intending users are strongly urged to refer to the quoted source documents for further information before using this data for any purpose other than that described here.

	I*		1 - 1			<u> </u>			41A F						-	· -		r			
Canana Kara	Location Loc	Site	+	escriptio	-	B	1	 r	1	Land		A	T	<u> </u>	Pop.		raffic	-	Daneous	Annual	<u> </u>
CDR46A\255	E IUWWAFEZ	THE .	Area ha	Imp %	Urban %	Res %	lad %	Com	Inst %	Open %	Other	Agr	For	Other	- 0	Road	Dens	Roof	Mốt	Rain	<u> 2</u>
Arkansas	Little Rock	1-30	in a	90			_	71	70	78	ningt.	%	%	nural	p/ha	% 83	veh/d 42000	%	Helens	1237	mg/L
Australia	Armidale	Rural galv iron roof	+-	100		1		┼─	 -		 	 			-	ှာဆ	42000	100		797	11.
Australia	Armidale	Rural conc tile roof	1	100		_	-	-	1				-					100		797	
Australia	Armidale	Urban galv iron roof	+	100	83		 		-		! <u> </u>		-	 	 	 		100		797	
Australia	Armidale	Urban conc tile roof	†	100	83				<u> </u>			-	├	 	1	\vdash		100		2797	
Australia	Armidale	Indust galv iron roof	 	100	. 83		.83	L.—				-	-	 	 	-	-	100	-	797	
Australia	Armidale	Indust conc tile roof	十	100	83		- 83			-		-						100		797	
Australia	Canberra	Burra Ck at Queanbeyan	7060		0	0	١ .		ō	Û	٥	40	60	0		\vdash		100		630	470
Anstralia	Camberra	E Valley Way Dr	1		83	H	 	 	Ť				-	 	-			-		430	
Australia	Сапрета	Ginninderra Ck at Baldw	7000		10		 		-						-		ļ			630	180
Australia	Canberra	Ginninderra Ck at Barton	+		0	0	0	0	0	0	0	85	15	8						630	66
Australia	Canherra	Giralang test area	94		85			-	Ť				 "	 							3342
Anstralia	Capherra	Gungahlin test area	112	, ,	0	0	0	0	Đ	C	0	100	0	0						830	790
Australia	Canberra	Gudgenby R at Tennant	67100		0	0	_		0	0	0	0	$\overline{}$			_				630	770
Australia	Canberra	Gudgenby R at Naas	38800		0	0			0	0	0	15		0	_					830	150
Australia	Camberra	Licking Hole Ck at Cotter	_		0	0	0		0	0	0	0	_		_			-		- 630	40
Australia	Сапрента	Yarralomia Ck at Cortin	2690		60		Ť	-				25	15				-	-		230 230	1605
Australia	Katoomba	Wetland	26		100	60	0	30	G	10	0	- 1	_					\vdash			13.5
Aestralia	Melbourne	Bulli Road Dr	78	36	100	3	50		0	24	13	0	_			13				750	331
Australia	Melbourne	St. Keda function Dr	31	86	100	37	0	_	- 5	2	46	0	-	-		46		-		650	105
Australia	Helbourne	Vine Street Dr	78	45	100	55	2		+	19	20	0	_		32	20		\vdash	-	600	168
Australia	Melbourne	Bell Street Main Dr	283	58	100	43	24		2	4	20	0	0		25	20				700	22
Anstralia	Helbourne	Palmer Street Dr	171	75	100	35	8	9	5	10	30	0			56	30		-		700	185
Australia	Melbourne	Havethorn Main Dr	800	61	100	60	- 1	4	7	-	21	0	0			21	-		-	700	146
Australia	Helbourne	Gardenia Ave Dr	86	44	100	74	0	1	2	5	17	0	0	0	27	17		-		750	144
kestralia	Melbourne	George St Dr at Victoria S	227	44	100	64	0	1	6	16	13	0	0		33	13				750	261
kustralia	Helbourse	George St Dr at High Scho		44	100	62	0	2	13	3	19	0	_	- 0	28	19		-		750 750	217
kustralia	Melbourne	Ruffeys Cr Dr	74	40	100	56	0	i	3	· 21	19	0	0			19			 	750	226
lustralia	Melbourne	Pickering Rd Dr	25	64	100	0	49	3	- 0	23	25	0	0		0	25				850	92
lustralia	Helbourne	Lum Road Drain	180	47	100	53	0	0	2	20	24	0	0		29	24				850	270
lostrafia		MMBW Dr at Reynolds Rd			17	4	0	0	-	-0	0	- 1			2,	13				750	597
lustralia		Balcama	15.9		83	83	-	-	-	- *	-	\dashv				6				868	277
lustralia	Perth	Woodlands	13.4		83	83							_			10				868	
Pentralia		Bayswater i	!0		83	83		-								12				868	
ustralia	 	Bayswater []	19.9		83	83	-	-	+			_	-		-	7	_	-		868	
estralia	Perth	Hyaree	36		83	50	50		-				\dashv	-		14				868	
lostralia		Beatrice Ave	191.8	 '·	83	83		-	\dashv			\neg	\dashv			7				868	
estralia		South Lake	66.2		83	83		-	\dashv	-						10			-	868	
estralia		Westfield !	93.4		83	83	\dashv	-+	\dashv			\dashv			-	8				868	
astralia		Westfield H	95.5			17	.17	-+		-17 [⊥]						6				868	
estralia		Kelmscott Hill	67.6		83 83	50	Ī	+		50	\rightarrow					6				868	
astralia		Bowman Ave		\neg	100	٦	\dashv	\dashv	\neg	٦		C	6	0		•				1215	170
mtralia		Bradbery	98		83	83		\dashv	\dashv				-	 4		- i				1215	39.6
		Bunnerong Channel	55		100	80	0	20	0	0	0	0	0							1130	275
estralia		Cop & Saucer Cr	506	47	100	81	9	1	-	6	3	-	0	0						1100	156
atralia		Devlins Creek			95	-	-1	+	+	-		e	5	0						:1215	20
		Jamisos Park	17.1	35		100	0	0	0	0	0	0	0	- 0		\neg				1215	150
		Lane Cove River			75	\dashv	1	1	7	寸	7	10	15	0						1215	20
		Husgrave Ave Dr	131		83	.83	1	_	_	\dashv	$\neg \uparrow$		-				-			1150	269
		Powells Creek	231		83	83		1	1			_				\dashv				990	236
		Qantas Drive	0.0242	83	83	ŢΓ			+			1			\dashv	100				1215	
		Ross St Drain	267		83			_			\neg	\dashv	\dashv							1215	84.4
		Shrimptons Creek			100	\neg						0	0	o	\neg	7		-		1215	20
		Woodbridge			0	8	0	0	0	0	0	100	0	d		_				* 1215	100
		Byzrong Creek			3			_	十	1		18	79	d		\dashv				1160	170
		Dakey Creek			83	83	_	7	\dashv		1	\neg		寸					\neg	1100	
		larsely Creek			83 83	Γ	\neg	\top		\dashv		1	\dashv	- 1	\dashv	$\neg \dagger$					
		Hacquarie Rivulet			17			1	7	$\neg \uparrow$		+	7			$\neg \uparrow$	— 			1100	-
		Dack Creek			17		1	\neg	\top	$\neg \uparrow$		_	_	_						100	
		Brooks Creek				83		1	\top	$\neg \uparrow$	$\neg \uparrow$		_					+		1100	
														1							

Table A1 Page 1

									Water Qua	dity							_			References
TotP	Toth	Pio	l a	O&G		_		Ú	Û	Ni	Hg	Fe	Ho	Torb	ρH	TOC	TotColi	FecColi	FecStrep	Macraica
mg/L	mg/L	mg/L	mg/L	mg/L	mg/	L mg/	L mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	HTU		mg/L	#/100ml	#/100ml	#/100ml	
		0.108	0.167					<u> </u>	ļ	ļ	<u> </u>	<u> </u>	 	ļ	<u> </u>	<u> </u>				127
	[0.0005	1.3 0.1		\vdash	-			 	<u> </u>	 	 	-	1.2		-		115		132
		0.0005	1.1		-	1	 		 -	 	 	 -	-	0.7		-	 	2		132
		0.05	0.2		-	+-	<u> </u>	 	 	+	 	+		6.5		1		0.5 122		132 132
		0.1	3.5		-			 	-		 	┼─	+	3		 	; 	115		132
		0.09	1.6				_	 	 	 	1	 	 	5.5		 	 - 	72		132
0.2	2.2							1	<u> </u>			 	 	"		 				116
0.123											i	 		90						53
0.138	1.835															15.7				28
0.2	2.4				<u> </u>	<u> </u>														116
0.44						<u> </u>	ļ <u>.</u>					ļ								115
0.29		<u> </u>				-	ļ	 -				 	<u> </u>							115
0.03	- 17						 	 		ļ			 			 				56, 116
0.2	6.1 6.0					-	 	 		-	-	-				-				116
0.51	9.0						 				<u> </u>	-	+	\vdash						116 115
0.076	1.04	-				 	 	+	-	 		-	+			-		2000		115 129, 130
1.2	6.76		5.8		19		0.0	0.58	0.48	0.02	0.0001	 		┝╌┤		61		7000		127, 130 48
0.21	4.6		1.1		9.6		0.00				0.00022	 		 		28				48
0.79	1.8		I		38		0.00		0.045	0.069			†			44				48
1.65	2.9	0.07	0.32				0.0			0.01						21				48
0.46	3.86	0.51	0.31	\Box	Ш		0.00	0.12	0.059	0.03	0.00019					32				48
0.39	9.16	0.53	1.23		- 14		0.0		0.091	0.022	1000.0					33				48
0.39	2.84	0.36	0.71		- 11		0.0097	4	0.018	0.017	0.00012		<u> </u>			31				48
1.01	5.57	0.26	0.55		23	 	0.009		0.038	0.026			<u> </u>			29				48
031	5.94	0.29	0.73			ļ	0.01		0.039	0.023						21				48
0.98	9.75 2.8	0.12	0.34			<u> </u>	0.0092	0.02	0.027	0.028						26				48
0.83	2.0	0.21	0.32				0.0095	0.02	0.015	0.03			-			51 19				48
031	6.39	0.16	0.21	+	21		0.01		0.026	0.022	0.0001					28				48 48
0.2	- 03/	4.0	02.				0.01	1 0.025	0.920	UJUZZ	0.0001					20				131
0.09			<u> </u>	\neg											_					131
0.13									-				-							131
0.17									_						-				1	131
0.18																				131 131
0.44																				131
0.08																				131
0.34																				131
0.22				- ‡	 															131
0.38 0.45				-																131
U.43	2.2		 -	\dashv	10	415											-	IFAn		116
-			+	\dashv	28	713								\dashv	7.1 6.47		2000000	1500 650000		92 24
0.3	-+	0.3	0.7	3	19						-	3.3		42	7		7770700	COUUCO		<u>24</u> 119, 120
0.05	1.2			+		_				-		در		74						116
8.45	3		$\overline{}$	\dashv	_	53				-				+						84, 116
0.05	1.4								_ +		_ 1	_								316
					30										6.78		5600000	410000		24
				\bot	18	\Box									6.98		2200000	410000		24
		QIII	0.483			_	0.0027		0.081			1.22	0.129							5
0.324	1.4			-	9.4							14.8		130	83	27.7				122, 123
0.01	_,				-			+					•							116
0.25	1.4		$\overline{}$	\dashv	\dashv	\dashv								+	\dashv	\dashv				116 116
0.835	1.4	-+		+	-	-									-					116 149
0.083	- -			\dashv		+								1		\dashv				149 149
0.064				\dashv	_	+		-+						-	-	\dashv				149
1.202					\top															149
0.128	$\overline{}$	1																		149

Country/State	Locat Town/Area	Site	Area	escriptio	Urban	Res	lad	Com	inst	Copen Copen		1	E	Out	Pop.		raffic	_	ilaneous	Annual	-
/ June			ha	%	%	%	%	%	MST %	%	urban	+	For %	Other	p/ha	Road	Dens veh/d	Roof	MtSt	Rain	22
Australia	Wollongong	Mullet Creek	Ha Ha	1 /6	170	+	70	76	76	78	groan	76	70	unus	p/na	%	ven/d	%	Helens	mm	mg/L
Australia	Wollongong		╂	+	-	1	<u> </u>	<u> </u>			<u> </u>	-							<u> </u>	1100	
Australia	Wollangong	Budjong Creek	+	-	- 83				-		-	-								1100	
Australia		Minnegang Creek	╅	┼	. 83	1		-				-								1100	
	Wollengong	Wegit Creek	-	—	- 83	1]			<u> </u>									1100	
Australia	Wollongong	Warrawong Drain			. 83	1		83				<u> </u>			-					1100	
California	Coyote Creek	Knox	623	+	. 83	•	. 17	17	17	17					30					539	28
California	Coyote Creek	Sezview	256	+	. 17		<u> </u>			. 17	,				0					539	71
California	Los Angeles	Urban highway		100	. 83	50		50								83	200000			320	17
alifornia	Los Angeles	Los Angeles River	210000	<u> </u>	. 83															320	71
alifornia	Oakland .	Urban			83															539	20
California	Richmond	Full catchment	658		100	73	4	12	0	5	6	- 0	0	0		4				498	
California	Richmond	Trucking centre	10.9		100	0	77	0	0	0	23	0	C	0						498	
alifornia	Richmond	Parking area	0.27		100	0	0	100	0	0		_	0	0		,				498	
California	Richmond	Petrol stations	8.1		100	70	0		0	0	0	C	0	0						498	
alifornia	Richmond	Residential	53		100			-	0	5	0	-	0	0						498	
alifornia	Sacramento	Highway 50	1 3	82	17	۳	Ť						U			83	86000		-	414	9
aliforeia	San Francisco	Vicente North	6.5		100	100	0	0	0	8	0	8	0	0	62	ره	00000			539	4
alifornia	San Francisco	Vicente South	8.5		100	80	0	_	0	0	5		0	0	62			-		Alle Same	4
alifornia	San Jose	Urban streets	1 3	83	83	- 30	U	13	- 0	- 0		U	U		02	67		-		539	
alifornia	Lake Tahoe	Rural	-	6.5	63 17	H						\vdash				83				539	24
alifornia	Lake Tahoe	Low dens res	1			97										 		\vdash		976	5
alifornia	Lake Tahoe	High dens res	 		. 83	83														976	60
alifornia			1		83	83		t					_							976	25
	Lake Tahoe	Commercial	-		83			83												976	77
alifornia	Walnut Creek	1-680		100	83	83										83	70000			516	22
anada 💮 💮	Toronto	Broadview			100	100	0	0	0	0	0	0	0	0		- 1				813	13
anada	Brucewood				100	100	0	0	0	0	0	0	0	0						B 13	10
anada	Burlington	Aldershot Plaza	6.9	100	100	0	0	100	0	0	0	0	0	0						828	
anada	Barlington	Blair Road	10.3	69	100	0	100	0	0	0	0	0	0	0		49		20		828	
znada	Berlington	Malvern	23.3		100	100	0	0	0	0	0	0	0	0						828	10
anada 💮	Burnaby	Commercial !			83	T		83												1118	
anada	Burnaby	Residential			83	83		ſ												1118	
anada	Burnaby	Industrial!			83		83									\neg				1)18	-
anada	Вигваву	Commercial2			83			83	7	一					\neg					1118	5
anada	Burnaby	Residential 2			83	83		Γ	_					$\neg \neg$						1118	
anada	Burnaby	Openi			83		寸	十		83			-					-	-	1112	
anada	Burnaby	Open2	5 g		83	_	-		-	83		-	-							1118	
	Bernaby	Residential3			83	83	+	\dashv	7	<u>س</u>			-+							192010.0030	
	Burnaby	Open3	 		83		\dashv	\dashv		02 L		\rightarrow	+	-+						1118	
	Bernaby	Industrial2						\dashv		83		-+	-		\dashv					1118	
					83		83_	_						_						1118	
	Bernaby	Industrial3			83	_	83	L	_			10	_							1118	
	Burnaby	Commercial3			83].		83_				_								1118	
	Burnaby	Industrial4			83		83	L	_											1118	
	Bernaby	Commercial4	-		83	L		83_	\perp											1118	
	Bernaby	Residential4			83	83_				L										1)18	
	Bernaby	Open4		····	83					83_										1118	
	Grand River		667000		3							75	19	3	0.8					850	IC
	Goeiph	Guelph North			100	91	0	6	0	3	0	0	0	0						850	_
	Gaelph	Guelph West			100	44	30	3	0	23	0	0	0	0	1					850	
nada	Guelph	Retarding basins	32.2		100	83	0	0	12	5	0	0	0	0						850	_
	Guelph	Roofs		100	100				1	7	-	0	0	d		\dashv		100		850	_
		Street gutters		83	100	\dashv	\dashv	\dashv	\dashv	-	-+	+	+		-	83				850	-
	Guelph	Commercial			100	+	لت	-83 L	+	+	\dashv	\dashv	\dashv	-1		٦				850	
	Ottawa	Storm sewer			83	+		7	\dashv	-		+	\dashv		\dashv	\dashv				900	
		Areawide mean			83	لــــ	50	+	+	+		+	+			-+		\dashv		100 to 600 mg	
	Saugeen River	ALEMNE HEEN	398000		ည	_	₩	\dashv	+	+	\dashv	/=	22			-+		\dashv		802	
		Areawide mean	370000		<u>"</u> ¦-		_ L	-+-	+	\dashv		64	33	_2	0.1					930	•
					83	_	50		+	\dashv		-	_							875	-
		Emery unpaved driveways		100	83	-	_	_	_	4		_	\perp			\dashv				813	
		Emery roofs		100	83	_		\bot	\perp									100		- 813	
		Emery footpaths			83											1				813	
ada 1	Toronto	Emery parking		83	83	1	- 1	1		T		T		T		83		- 1		813	

		,	,	, -		,			Water Qua											References
TotP	Total	Pb	Z n	0&G	_	_	લ	វ	ú	Ki	Hg	fe	Ma	Turb	рĦ	TOC	TotColi	fectoli	Fedstrep	
mg/L	mg/L	mg/L	mg/L	mg/L	i mg/l	. mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	KTU		mg/L	#/100ml	#/100mi	#/100ml	
0.064		ļ	<u> </u>	-	ļ	ļ	ļ	 	ļ	1	ļ		<u> </u>	ļ		<u> </u>				149
0.073		ļ <u>.</u>		↓	ļ	<u> </u>		J	ļ	<u>. </u>	1		<u> </u>			<u> </u>				149
0.299				ļ		ļ		ļ	<u> </u>		<u> </u>	1								149
0.076		ļ		<u> </u>	<u> </u>	<u> </u>		1		ļ	<u> </u>		<u> </u>				<u> </u>			149
2.112		ļ <u> </u>		1	<u> </u>	<u> </u>	<u> </u>		ļ											149
0.418	3.33	+				93		<u> </u>	0.09						_					3
0.59	5.22				<u> </u>	111		ļ	0.05	8	<u> </u>		ļ			<u> </u>				3
		0.99	0.55	<u> </u>		196			ļ	ļ	<u> </u>									117,118,12
		<u> </u>		ļ	ļ	<u> </u>			<u> </u>		<u> </u>									33
		<u> </u>		 _	59						<u> </u>	<u> </u>	ļ <u>.</u>				293000			83
		<u> </u>		7.87							1	ļ								125
				1.27		ļ														125
		ļ		16.1		ļ. <u>.</u>		1	<u> </u>											125
				10.9	_					ļ										125
				3.92				<u> </u>	<u> </u>											125
		0.28	0.27			51														117,118,12
				7.5						<u> </u>	<u> </u>	<u> </u>	L	$oxed{\Box}$	5.5		568000	108000		61
				125	4.5						1		<u> </u>		ឌ		200000	39900		61
	1.1		0.18		24	200	0.00	0.02	0.03		0.00005			49	6.7	110				104
0.1	0.2			0.6																37
0.7	1.2			0.8				ļ <u> </u>												37
8.0	0.7			20																37
13	1,7			33							<u> </u>	<u> </u>								37
		0.75	0.3			120		<u> </u>		<u></u>										117,118,17
0.4	3.9				15.7					<u> </u>										137
0.28	4.1				13.7															137
0.252		0.098	0.127						0.022			<u> </u>								90, <u>1</u> 07
0.122	1.33	0.095	0.14				10.0	0.013	0.029	0.026		· .	1							91
0.159		0.044	0.16		113				0.013											90,107,137
						1031						ļ			5.7					50
						763							ļi		5.8					50
						269									6					50
						108						<u> </u>			5.8					50
						57						<u> </u>			6.8					50
						70									6.6					50
						78						ļ			5.8					50
						99					<u> </u>				63					50
						46									7					50
						430									8.1					50
						496									75					50
						169								l	73]			50
		0.65	0.85				0.008	0.035	0.22	0.02		7	0.2							50
		1.3	1.4				0.012	0.023	0.22	0.035		5	0.25]		50
		0.55	1.3				0.008	0.0005	0.1	0.022		1.5	0.18							50
		Q.I	0.15				0.006	0.0005	0.03	0.01		1.5	0.06							50
0.205	3.45	0.005															1			99
0.2	23				10.2															137
0.35	3.7			\Box	13.9															137
		0.04			8													8000		143
		0.04			4													20		143
		0.04			7	\dashv												1500		143
					17													1500		143
		0.13			_															71, 96
0.299		0.233	0.307				0.0068		0.0571	0.0085										80
0.085	1.6	0.003																		99
0.309		0.097	0.274	2.56			0.006		0.0696	0.0313	0.000028	8.72								79, 80
																		26000	6200	
]	1600	690	
																		55000	3600	
	- 1	i	1	- !	ŀ	ļ	- 1	- 1	İ			[]		į	2800	900	98

0 5	Location		1	scriptio		<u> </u>		T		Land		. 1	-		Рор.		raffic	•	laneous	Annual	- F
Country/State	Town/Area	Site	Area	imp	Urban	Res	Ind	Com	inst	Open		_	For	Other		Road	Dens	Roof	MtSt	Rain	22
			ha	%	%	%	%	%	%	%	urb2n	%	%	rura	p/ha	%	veh/d	%	Helens	mm	mg/L
Canada	Toronto	Emery roads	 -	83	83			 	_							83		100		813	
Canada	Toronto	Thistledown roofs	ļ	100				-										100		813	
Canada	Toronto	Thistledown paths]	83				<u> </u>					-						813	
Canada	Toroato	Thistledown parking	 	. 83	83			 								.83		-		813	
Canada	Terente	Thistledown roads	-	83	83				<u> </u>						<u> </u>	83		\vdash		813	77.7
Canada	Toronto	Industrial	 	-	83	├-	83		_											813	77.7 !28
Canada	Toronto	Industrial			83		83			-								<u> </u>		813	
Canada	Toronto	Residential	ļ		83	83]	L									-		813	100
Canada	Toronto	Commercial			83	17		83	_									-	-	813	220
Canada	Toronto	Industrial			83	17	83		<u> </u>									 		813	140
Canada	Toronto	Suburban			83			 										\vdash		813	304
	Welland	Urban			83			لِــا												828	58
Canada	Windsor	Windsor A			100	100	0	1 -		0	0		0	0				 		802	279
	Windsor	Windsor B			100	100	0	0	0	0	0	0	0	0	25				<u> </u>	802	305
	Windsor	Labadie Road	11.9		83	83		لــــا				-			50			<u> </u>		802	390
	Windsor	Areawide mean			83	<u> </u>	50								<u> </u>	$\vdash \vdash$		 		802	
	Shenzhen	Urban	 		83			 							 			_		 	313
	Shenzhen	Urban road	ļ	- 83	83			لـــا								83					718
	Shenzhen	Urban road	<u></u>	83	83			لــــا						<u> </u>		83		_			520
	Zhuhai	Urban			83			igsqcut										<u> </u>			
	Zhuhai	Urban			83																
Colorado	Boulder	South	74	57	83	50		50							62					477	805
Colorado	Boulder	North	51	41	83	83									30					477	179
Colorado	Denver	1-25		37	83											83	149000			376	410
Colorado	Denver	Big Dry Cr trib	13	41	100	100	0	0	0	0	0	0	0	0						376	383
Colorado	Denver	Cherry Knolls	23	38	100	100	0	0	0	0	0	0	0	0	59					376	180
Colorado	Denver	116 & Claude	68	24	100	100	0	0	0	0	0	0	0	0	35					376	365
Colorado	Denver	Asbury Park	51	22	83	86									22					376	493
Colorado	Denver	Rooney Guich	164	1	17					17					0					376	403
Colorado	Denver	North Ave Drain	28	50	83	17	17	17	- 17	17					22					376	492
Colorado	Denver	Villa Italia	30	91	100	0	0	100	0	0	0	0	0	0	0					376	260
Denmark	Viborg	Spring/summer	22.2		83	83														591	82
		Autumo	22.2		83	83														591	22
Dist of Columbi		Dutief	4.9		100	100	0	0	0	0	0	0	0	0						1034	56
Dist of Columb		Lakeridge lalet	28	27	100	100	0	0	0	0	0	0	0	8	52					1034	175
Dist of Columbi	Washington	Stratton Woods	3.2		100	100	0	0	0	0	0	0	0	0						1034	54
Dist of Columbi		Westleigh Inlet	17	21	83	93									7					1034	
Dist of Columbi		Fairidge	7.7	34	83	88														1034	25
Dist of Columbi		Stedwick Inlet	11	34	83	78									37					1034	54
Dist of Columbi		Good Hope Run	107		83										93		-	t^-		1034	1697
Dist of Columbi		Urban			83		_												-	1034	2100
		Grahame Park	350	35.5	100	31	2	6	23	26	12	0	0	0	34	12		T		756	
		Hotorway	0.0836	83	83			Ť		-50		1			T	83				756	
		South Oxbey	243		83	. 83		$\neg \uparrow$									0 0 00	 		756	
		S Oxhey subcatchment	0.05	23 42	83	83	_									50		50	٠	756	
	Stevenage New Tox		143	23	83	83		\vdash							66			1 -		756	
	Woodplumpton Bre		- 70	83	17	٦		\vdash				83				83		†		800	
England		Highway		83	50	\dashv	\neg	-	\dashv			-	_		-	83		 	<u> </u>	1	
		Composite	22	40	83	50		i. 17			-17	-	_			17		1		600	250
		Highway 834	- 22	36	17	Ju ["1			- 11		-			83	20000	1		1575	
		Pompano Beach	19.2	30	100	100	0	0	0	0	0	0	0	0	18		2000	19	 	1575	
			8.3	. [100	U		U	U	U	U	v	U	- 10	50		 ''	 	1575	
		Highway		50	17		-	-					_		<u> </u>	50	54000	+	 	1575	
	Maitland l'change		19.8	50	17				-												
	Haitland l'change (19.8	50	.17				-							50	54000	_		1575	
		1-95	12.5	190	83						-				 	83	140000		├	1519	
	Orlando		16.8		73	40	0	0	0	0	33	0	27	0		33	22000	' 	 	1575	
		L Haggiore area			83	50	_			50					<u> </u>	 	<u> </u>	 		1575	
		L Haggiore area 2			83	50		إا		50						<u> </u>		 		1575	
	Springhill		15.2	40	100	100	0	0	0	0	0	0	0	0	_	<u> </u>		-	<u> </u>	1575	
Florida	Tampa	LYoung Apartments	3.6	6	100	100	0	0	0	0	0	0	0	0				<u> </u>		1575	53

			,			_			Nater Qua											References
TotP	Toth	Pb	In	O&G	BOD	COD	Cd	Û	G	Ni	Hg	Fe	Ma	Terb	рН	TOC	TotColi	FecColi	FecStrep	
mg/L	/Ngm	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	HTU		mg/L	#/100ml	#/100ml	#/100ml	
		<u> </u>		<u> </u>				ļ	ļ	ļ	<u> </u>	ļ	<u> </u>					19000	8500	98
	ļ	<u> </u>		ļ	<u> </u>	-	<u> </u>		ļ					<u> </u>				500		98
										ļ			ļ	<u> </u>				00011	1800	98
				ļ						L								2000	1500	98
	ļ		<u> </u>	<u> </u>		<u> </u>			<u> </u>									4800	7900	98
0.2	_		0.143			<u> </u>	0.00187	0.0201	0.0232	0.0149	0.00042	6.41		<u> </u>						44
0.49				7.95		<u> </u>			<u> </u>											44
0.4		0.04				ļ			0.03			3						300000		25
0.6		80.0	0.3						0.8			12						300000		25
0.7	<u> </u>	0.04	0.3			<u> </u>			0.8			4						30000		25
	<u> </u>				19												454000			15
					19	1.											16800			83
0.14					20.5	_														137
032					12															137
	ļ				17									459	7.5		34500	4350		61
0.231		0.154	0.234				0.0054		0.0571	0.0278		<u> </u>								80
0.045					113															154
0.051	2.35				17.1	23.3]				154
0.06						10.9]			154
0.042	2.51				3.9	5														154
0.115	4.47				6.4															154
2.74		0.98		42		684														П
0.121	3.1			8.4		123														11
		0.68	0.62			289														117,118,12
0.693	2.9	0.183	0.194			129			0.032											3
0.429	3.32	0.194	0.195			122			0.035											3
0.63	3.56	0.292	0.195			137			0.028											3
1.025	4.62	0.433	0.349			234			0.059		·									3
0.42	3.54	0.052	0.105			73			0.037											3
0.784	5.94	0.358	0.543			280			0.077							{				3
0.704	4.84	0.262	0.32			184	0.0044		0.033											3
0.66		0.073	0.425			40	0.0014		0.013		_				6					64
0.74		0.015	0.51			60	0.0005													64
0.499	254	0.227	0.156			64														3
	- 1/1	0.227			+	60			0.038	-										3
0.34	2.23	0.00	0.084			51			0.028											3
0.397	2.6	0.186	0.067	_	-	51		+	0.037					∤				1800		3
0.351	3.14	214	0.086		- 5	51 45			0.026											3
0.388	2.73	0.141	190.0	-	10		-		0.03						-		455555	2700		3
0.42	21	+			19	335		\longrightarrow							65		600000	310000	21000	
					126 22.2	307			\longrightarrow						7.00					83
- 					44	343									7.38		231			34
		- 441	0.4/7	200	7		0.000		0.102						3.5					13
+		0.41	0.467	\dashv	-4		0.008		0.106							\longrightarrow				35, 83, 111
		0.028	0.017		+		0.00086		0.0065				0.11							52
+		V.ZU3	9.2/1		-+		+		0.028				0.11	- 	- , _	-+				78
	\dashv	0.254	0.322	-	\dashv				0.673					-+	6.8					9
0.35	1.9	0.22	0.36	$\overline{}$	19	150			0.023				-	- +	6.8					148
5.33	1.7	0.23	0.07	\dashv	-17	38			0.017						9.5					87
0.24	1.46	0.155	0.077	-+	6.7	22	0.0013	0.01	0.0069			0.249		13	73	7.3	355000	31200	43700	117,118,12 41
0.224	1.833	4.133					4,441,3	16-6		+		W-E-77	+	- 13	6.7	12	223000	31,200		152, IS3
0.533	3.278	0.723	0.347	-+	+	+	0.0019	0.01	0.06	0.028		1.176			6.1	$\overline{}$				<u>152 (53 </u>
0.05	0.79	0.181	0.074		\dashv	+			0.0386		· ·	:.:/0	+	-	6.9	-+				05,152,15 151,152,15
	***	0.623	0.303		\dashv	-	+	-+	UPS COLUMN				+	-+	0.7	\dashv				127
0.16	1.4	0.062	0.085	-	\dashv		$\overline{}$				+				\dashv	+				81, 82
0.25	1.6				\dashv			1	+			+	 	- 		-+				113
0.48	2		- -		十	\dashv	_		+			-+		- 	+	\dashv	+			113
0.307	1.18				十	\dashv										\dashv				59
		1		ı		1	- 1													

	Locatio	on	D	escriptio	G					Land	Use				Pop.	ī	raffic	Misce	laneous	Annual	
Country/Sta	te Town/Area	Site	Area	imp	Urban	Res	ind	Com	Inst	Open	Other	Agr	For	Other		Rozd	Dens	Roof	MtSt	Rain	22
			ha	%	%	%	%	%	%	%	urban	%	%	rurai	p/ha	%	veh/d	%	Helens	min	mg/L
Florida	Tampa	Charter Hrding		_	83															1575	33
Florida	Tampa	North Jesuit	12		83	1	17	- 17	17	-17										1575	87
Florida	Tampa	Wilder Ditch	17		. 83	1	. 17		17	17										1575	33
Florida	Tampa	Norma Park	19	+	83			91												1575	22
France	Paris	Maurepas	26.7	60	83		_								100					608	191
France	Paris	Les Ulis	43.1	42	100		_		0	0	0		0	0	350					608	439
France	Aix-en-Provence	Aix ZUP	25.6	78	100		0	0	0	0	0	0	0	0	210					600	296
France	Aix-en-Provence	Aix Nord	92	35	83	90							2.		40					600	473
France	Metz	A-4	0.147	. 83	17											83	5500			800	182
France	Bordeaux	A-61	0.63	83	17											83	7000	50020		942	65
France	Ран	Street		83	83											83					
France	Pau	Street	1	83	83				_							83					
Germany	Bayreuth	Tar felt roof	0.001	100	83													100		642	44
Germany	Bayreuth	Clay tile/copper roof	0.001	100	83													100		642	36
Germany	Bayreuth	Asbestos cement roof	0.001	100	83	\Box												100		642	48
Germany	Bayreuth	Zinc sheet roof	0.001	100	83													100		642	68
Germany	Bayreuth	Gravel/zinc roof	0.0032	100	83													100		642	4.4
Germany	Hildesheim	Urban			83															658	171
Germany	Hildesheim	P5	0.41	83	83											83	10000			658	
Germany	Karlsruhe/Waldsta		 	100	83	83												100		650	
Germany	Karlsruhe/Waldsta			83	83	83										83				650	
Germany	Munich	Urban			83											Γ				900	
Germany	Pleidelsheim	A-81	13	100	17							83				83	41000			792	
sermany	Heilbronn-Obereise		2.52	86	17							83				83	47000			756	
Germany	Ulm/West	A-8/B-10	25	40	17							83				.83	52000			780	
lawaii	Kamooalii Stream		1134		17										18	Γ				3000	
llinois	Carbondale	Campus L - urban			100	0	0	0	100	0	0	0	0	0			******			1100	109
Hinois	Carbondale	Campus L - forest			17			1					83							1180	120
linois	Champaign-Urbana	John North	22	19	100	100	0	0	0	0	0	0	0	0	44	14				946	205
linois	Champaign-Urbana		16	18	83	91	\neg								44	13				946	248
linois	Champaign-Urbana		6.8	58	83	. 17	17	17	17	17			\neg		7	26				946	282
linois	Champaign-Urbana	Mattis South	11.2	37	83	90	1		- 1	Γ			\exists		54	21				946	311
linois	Chicago	Lake Ellen comb. inlets	212	17	100	83	0	5	5	7	0	0	0	0	20					904	250
linois	Northeast	Pioneer	933		17								83							904	34
linois	Northeast	Perry/Beecher/Olcott/Alde	1470		17							83	ı							904	762
linois	Northeast	Centex/Elmhurst	170	10.0	83		83		\top			ſ	\neg							904	302
linois	Northeast	Woodfield/Hawthorn	90		83			83										\neg		904	386
linois	Kortheast	Edens	104	83	83	7		Ī			83	十	十		\neg	83		\neg		904	266
linois	Northeast	Mundelein/Glendale/Schau	466		.83	83					Ī	\dashv	\neg		\dashv	ĪΓ		_		904	513
linois	Northeast	Park Forest/Bolingbrook	51		83	83	\dashv		7	\dashv		1	\dashv	_				-	\dashv	904	797
dia		Koraput			83	Γ	\top	+	\dashv	\dashv	+		\dashv	一十	_	\dashv		-		7	- '''
dia		Unnao			83		. 83 _	\neg	+	+		+	\dashv		-+	-			-		
diana		McDowell Ditch	112	20	83	T)			83	+		17	7	十	\dashv	\neg		-+	-	900	75.3
diana	Grissom Air Base	East Ditch	31	21	83	\dashv		83	Γ	1		17	\dashv	\dashv	-+	+		-+		900	166
diana	**************************************	Cline Ditch	28	25	83	83	-	17	\top			Ī	5	\dashv	一十	\dashv	-+	-		900	87.8
diana		Ross-Ade upper	11.7	38		100	0	0	0	0	0	0	0		22	21		17		900	105
diana		Semi-urban (1967)		. لت	50	-	+	+	+	+	-	+	+	1			+	-"		900	955
diana		Rural (1967)		 ,	17	+	+	+	\dashv	\dashv	-+	+	\dashv	\dashv	-+	+		-		900	244
diana		iemi-erban/rural (1974)	118		50	50	+		17	\dashv	_	39	+	\dashv	8	-+	+			900	<u>244</u> 59
p28		lanakuma	12.4	91	83	17	┙.	83	" _厂	+	\dashv	37	+	\dashv	161	+		-+	-	050000000000000000000000000000000000000	152
pan		Gtasuma	26.8	45	83	8 3	7	٦,	+	+	-+	+	\dashv	\dashv	90	+			-	1363	
		Zamashina River	3220	–	34	18	+	-	+	+	\dashv	+	+		44	-		\dashv		ASS 0.000	67 230
pan		Parking area	0.088	83	83	10	+	+	+	+		+	+	\dashv	-14			-+		1571	250
pan		Irban road	0.16	83	83	+	+	-+-	+			+	+	+		-83		-	\dashv		
pan		ndustrial road	0.10	83 -	83	— I.,	83 83	+	+	+	-	+	+	\dashv		83_		-+			
P28		iommercial	0.18	m.	83	7	ພ	ஓ∟_	+	-	-+	+	+	\dashv		83_		-+]		
pan		lesidential	24.2			83	7	83	+	+	-+	+	+	-				-+			
P20 P20		arm land	7	_		<u>ب</u>	+	-	+	-			+					-			
PAR		orest	183		17	+	+	+	+	+	_	83	_m L			\dashv		_			
	. 17	vicit i	103		17	- 1	1	1	- 1	i	- 1		83	- 1	1	- 1	1	1	1	- 1	- 1

					-				Water Qual	ia,							-			D. C
Toti	Toth	Pb	Zn	O&G	BOD	COD	Cd	G	Ca Ca	Ni Ni	Hg	Fe	Ma	Tarb	рH	TOC	TotColi	FecColi	Fecstrep	References
mg/L	mg/L	mg/L	mg/L	mg/L			mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	NTU	P.:-			#/100ml		
0.395	231	0.049	_		13			T-"	0.01											3
0.196	1.76	0.056	0.094		10	5 50			0.007							1				3
0.229	1.56	0.085	0.051		14	51			0.006											3
0.151	1.18	0.046	0.037		17	41			0.011											3
					12	77											1			29
		•			34	188												_		29
		<u> </u>	[38	202			ĺ			l'								29
				<u> </u>	45			1					<u></u>							29
		0.848				208			ļ		<u> </u>									4
		0.24				60		ļ	<u> </u>				<u> </u>							4
		0.38						 	0.14]		148
		0.16	_					ļ	6.14											148
		0.037	0.104				0.0006		0.0076						4.2					38, 106
		0.039	0.054				0.00043		0.355		<u> </u>				5					38, 106
		0.024	0.023				0.00013	-	0.0105		ļ				73					38, 106
		0.038	43.7				0.0013		0.027		-			<u> </u>	6.6					38, 106
	-	0.003	9.16	ļ			0.000067	<u>'</u>	0.0048			· _			6.9					38, 106
				ļ	8.3					4						-				72
		0.304	0.436		14.9	91	0.0042	+	0.136	0.035				\sqcup	7.5	28.3				47, 148
		0.104	0.024			22	0.001		0.235	4 4==					6.2					148
		0311	0.603	$\vdash \vdash \vdash$		49	0.0064		0.108	0.057	ļ				6.4					148
0.7		0.11	0.13	7.03		107		0.004	0.01			2.42								42
0.25		0.202	0.36 0.62	7.02 5.51		118	0.0059					3.42 5.16								126
031		0.163				85.6	0.0028		0.058	-		2.18								126
0.061	1.25	U.103	0.32	203		0.00	0.0020	0.0032	OCULU			2.10		67						126
mot	1.23			 	50									- 0/	7.7			292		32 86
					<u></u> 53										7.7			39		86 86
0.75		0.237				126			0.083			2.51			1.4			37		3. IO
0.732		0.217				111			0.043			- 21						-		3, 10 3, 10
0.498		0.554				198	-		0.048			3.99								3, 10
0.587		0.595				180			0.045			4.91					_			3, 10
0.506		0.322	0.23			138			0.049											3
-	0.7				2									\neg		-	-			105
	7.1				13	122														105
	2.6				14	78													_	105
	3.6			\neg	22	168														105
	23				14	128			1					1						105
	3.1				17	104														105
	3.2	7			16	117											<u>.</u>			105
		0.015					0.023	0.063	0.033			9.2	0.624							19
		1.1					0.01	0.24	0.1			4	0.26							19
		0.005	88.0			50						0.54								112
		0.006	0.29			30.4						0.8								112
		0.0143	0.55	$\bot \bot \bot$		30.3						0.6								112
\Box				\Box	36	140			\Box								11400000	3400000		61, 83
					10	93														61
					4	32														61
					4.5							ļ					3900000	450000		61
0.41		0.148	0.59		35.9	34	0.0027	0.0117	0.128	0.0192										88, 134
032		0.0232	0.134	_	13.8	17	0.0008	0.0032	0.0131	0.0089										88, 134
1.1	15			 -	-	30								+		 -				65
0.068	1.2			-	-+	8.1														114
0.14	1.2 7.1			-	-	11.9								+				_		114
0.56 0.14	0.9	+		\rightarrow		10.1			-+						\dashv			-		114 114
0.14	0.7	+			\dashv	8.5														114
0.073	0.5		-+		\dashv	5.2			+			+								114
0.023	1		-+	-+	-+	5.4		-	\dashv			+								114
0.48	4		-		-+	57.4												-		114

	Locatio	· · · · · · · · · · · · · · · · · · ·	 	scription		-		T.	1.	Land			-	12-	Pop.		raffic		llaneous	_	
Country/State	Town/Area	Site	Area	Imp	Urban	Res	Ind	Com	last	Open	Other	Agr	For	Other		Road	Dens	Roof	MtSt	Rain	22
			ha	%	%	%	%	%	%	%	urban	%	%	rural	p/ha	%	veh/d	%	Helens	mm	mg/L
Japan 		Bare ground	0.0036		17	L			_			<u>_</u>		<u> </u>				<u> </u>			
Kansas	Kansas City	Rock Ck, Overton	23	38		100	1	0	0	0	0	0	0	0	20			ļ	ļ	800	2216
Kansas	Kansas City	Indian Ck, 92nd	26		83				١	i		_			<u> </u>			!		800	156
Kansas	Kansas City	Rock Ck, Noland	15	68	83	1 .	17		. 17	. 17		<u> </u>			7			ļ	-	800	280
Kansas	Kansas City	Indian Ck, Metcalf	23	97	83			96				<u> </u>			ļ			<u> </u>		800	80
Kansas	Kansas City	Indian Ck, Lenaxa	29	44	83	<u> </u>	56	-				-			<u> </u>			 		800	102
	Selangor	Galv iron roof	0.0015	100	83	_					ļ							100	-	2396	72
Malaysia	Selangor	Conc tile roof	0.0015	100	83				_		<u> </u>	_			<u> </u>			100		2396	124
Maryland	Baltimore	Bolton Hill	5.7	51	100		0		_	<u> </u>			0	_				_		1050	74
Maryland	Baltimore	Homeland	9.3	29	100	100	0	-				-	0					<u> </u>		1050	50
Maryland	Baltimore	Mt Washington	6.9	29	100	100	0	-	_			-	0					_		1050	95
	Baltimore	Reservoir Hill	4	76	100	100			0		0	0	0	0	136			—		1050	127
Maryland	Baltimore	Hampden	6.9	72	83	17	17		17	17					99	-			ļ	loso	82
	Baltimore	Stoney Run	558		100	99	0	-	0		1	0	0					 		1050	
Maryland	Baltimore	Glen Avenue	80		100	98	- 1	0	0		0	0	0		-			 		1050	
Maryland	Baltimore	Jones Falls	253		100	97	2		0	0	0	0	0	0						1050	
Haryland	Baltimore	Bush Street	440		100	78	3	3	0	16	0	0	0	0	228					1050	
	Baltimore	Northwood	20	ليب	100	60	20	20	0	0	0	0	8	0	63				<u> </u>	1050	<u> </u>
	Montgomery	Townhouse/garden aparts	13.9	19.2	83	83				7-					<u> </u>				 -	1034	42
	Greenfield	Maple Brook	410	15	100	69	3	15	0		0	0	0	0	36			 	ļ	1050	147
	Northampton	Market St Brook Sewer Su	154	24	100	46	7	26	0	21	0	0	0	0						1050	149
		Locust Street	62	16	.83	8 5									27				ļ	1050	257
Massachusetts		jordan Pond	45	34	83	79									25				<u></u>	1050	78
Massachusetts		Rt 9	137	23	83	17.	17	17	17	17					17					1050	351
Massachusetts	L. Quinsigamond	Convent	40	33	83	17	17	17	17	17					2.5					1050	54
Hassachusetts	L Quinsigamond	Anna Street	243	12	83	17	17	17	17	17					22					1050	150
	Upper Hystic	Hemlock Road	20	16	100	100	0	0	0	0	0	0	0	0	12					1050	78
	Upper Mystic	Addison Wesley	7.3	69	100	0	100	0	0	0	0	0	0	0	0					1050	48
	Ann Arbor	Allen Ck (1965)	1540		100	37	_1	16	0	23	23	0	0	0		23				800	2080
	Ann Arbor	Allen Ck (1985)	1540		100	73	- 1	16	0	10	0	0	0	0		23				800	52
Michigan	Ann Arbor	Fuller Drain			83	0	0	0	100	0	0	0	0	0						800	
	Ann Arbor	North Campus Dr	636		38	34	0	4	0	0	0	0	0	62						800	
	Ann Arbor	Pittsfield N Inlet	1163	26	83	17	17	17	17	17					. 17					800	68
	Ann Arbor	Pittsfield S Inlet	810	21	83	. 17	17	17	17	17					5					800	46
	Ann Arbor	Swift Run Inlet	489	4	83	17	17	17	17	17					5					800	80
Michigan	Ann Arbor	Traver Ck Inlet	933	6	17					17										800	33
	Ann Arbor	Traver Drain	1850		33	31	0	2	0	0	0	0	0	67						800	
	Detroit	Urban			83															802	158
		Waverly Hills Inlet	12	68	83	:17	17	17	17	17					27					800	
fichigan	Lansing	Grand River	183	38	83	17	17	17	17	17					12					800	158
fichigan	Lansing	Grace St N Inlet	66	28	83	17	17	17	17	17					12					800	172
	Lansing	Industrial Drain	25.5	64	100	0	100	0	0	0	0	0	0	0	0					800	
lichigan	Lansing	Grace St S Inlet	30	39	83		52								12					800	
linnesota 💮	Minneapolis	l-94		55	83	50	_	50								83	80000			630	51
		I-94		49	83	.50		50			9					83	65000			630	
		Vadnais Creek	103	12	81	39	0	2	0	40	0	18	0	J		[<u> </u>			630	165
		Lamberts Creek	1950	19	76	40	0	10	0	26	0	3	0	21						630	
linnesota !	Sc. Paul	Wilkenson Creek	1250	8	69	25	0	3	0	41	0		0	30						630	
linnesota	3 2 2	Bassett Creek	7615	13	58	40	18	0	0	0	0	16	12	14	8.4					700	
linnesota		Bevens Creek	21471	2	5	4	1	0	0	0	0	76	13	6	0.8					700	45
linnesota		Carver Creek	16887	2	8	7	1	0	0	0	0		16	18	1.5					700	
finnesota		Credit River	6009	2	11	9	2	0	0	0	0	41	34	14	1.9					700	
finnesota		Elm Creek	3704	13	10	9	1	0	0	. 0	0	57	13	20	1.9	2000 0	Sec. 10. 10. 10.			700	
linnesota		Raven Stream	8392	32	4	4	0	0	0	0	0	79	10	6	0.8					700	46
linnesota		Shingle Creek	5931	16	40	20	20	0	0	0	0	36	11	13	4.7			T		700	36
finnesota		Vermillion River	7977	31	8	7	1	0	0	0	0	74	13	5	1.4					700	
limnesota		Eagle Point Creek	665	10	23	20	3	0	0	0	0	33	31	13	3			f -		700	28
linnesota		Ekmo Creek	170	2	6	6	0	0	0	0	0	37	48	9	1					700	
		Fish Creek	285	7	26	25	1	0	0	0	0	22	32	20	4.2	\dashv				700	
impesota							* 1	-		- T											

	-								Water Qua	lin								<u></u>		D. C
TotP	TotN	Pb	2n	0&G	BOD	COD	Cd	G	Cu	Hi	Hg	ře	Mn	Turb	pH	TOC	TotCeli	fectali	FecStrep	References
mg/L	mg/L		mg/L	mg/L	mg/L			mg/L	mg/L	mg/L	mg/L	mg/L	mg/L				#/100ml	#/100ml	#/100ml	
0.73			<u> </u>	<u> </u>		35.9			<u> </u>											114
1.636		0.131	0.831	-	12				0.09			ļ		1						3
1.297		A 17	001	-	28							 					ļ			3
0.555 0.246		0.164				106			0.048		_		 -	-			<u> </u>			3
0.599		 	2.721		14				0.041		}	 -		<u> </u>]		·	3
0.377	' 	0.195			1 14	20			0.036)] 		-	<u> </u>	1 1						3
 	\vdash	0.197				 i					-	├	<u>. </u>	15			47			150
0.932	15.				<u> </u>	218			0.107						6.9		12	6		150 3
0.421						172			0.312			 						11000		3
0.556				_		168			0.026		<u> </u>					-		21000		3
4.09			+		- "	177			0.042									300000		3
0.754	18.57	0.227	0.318			111	1		0.081									33333		3
														H			48000	19000	41000	
																	240000	810000	660000	
																	290000	120000	280000	
															_		380000	830000	560000	
																	38000	69000	50000	
0.3		-	0.075			21			_ · ·											46
1.5	ļ	9.178				58									7	22				61
0.53	 _	0.087	0.102		30	94						 			6.4	30				61
1.228	3/4		0.247			104			0.107		_									3
0.448	2.64					79			0.074											3
1.176 0.459	4.23 2.04					107 72			0.112											3
0.534	3.15		0.202			88			0.105											3
0314	3.13		U.175			- 00			0.034											3
0.114					+	-	+							+						<u>, </u>
1.63	3.5			-	28	- †						-					1200000	82000	140000	10
						$\neg +$	- +							31.1	7.7		1200000	3780	9800	
					1	_						1		71.17				15	29	
																		3900	11900	
0.268	1.52	0.061			6	一十														3
0.103	1.13	0.021			5		7													3
0.134					3	29 25							_]							3, 128
0.091	2				2	25														3
					_	_												5800	17100	
					146												431000			101, 102
0.198	2.26	0.111	0.121		9	64			0.015				\longrightarrow							3
0.458 0.394	2.51 2.87	0.122 0.17	0.245	\dashv	8	71 72		-+	0.03											3
0.546	1.96	0.116	0.244		10	67			0.014					\rightarrow						3
0.435	2.46	0.115	0.223		5	60			0.025					1	-				·	3
U.933	40	0.115	4.43		-	30	- 		UU (2)				\dashv							177
	 	0.407		+	-+	_		+					+	+	-					127 127
0.46	1.86	5.107		_	-	- +	+	+					- +		-+	-+	 			17
0.24	136			$\neg \uparrow$	_			- 				-		_	\dashv	\dashv		 -		17
0.2	0.97												\dashv		\dashv					17
0.31	2.18															_ 1				16
0.78	63			\bot																16
0.88	3.61														\Box	\Box				16
0.71	3.53														\Box	\bot				16
0.34	237				_										\dashv	\dashv				6
0.74	7.8					\perp									\dashv	_				16
0.27	231				 -	-														6
0.35 0.13	1.9			+	+										\dashv	-+				16
0.4	2.9				+			-+							\dashv					16
0.3	3.1	+	-+	+	\dashv	-	- -	-	$\overline{}$		-		-		-+	-+				i 6 6
0.08	2.55	+		-+	+	+	-+	- 	-+			+		+	\dashv	-+				16
					1		<u> </u>				[- 1	0

	Location			criptio		_	1			Land L		•	£	04	Pop.	-	raffic Dens	Roof	laneous MtSt	Annual Rain	72
Country/State	Town/Area	Site	Area	imp	Urban	Res	ind	Com		Open %	Other	Agr %	For	Other	p/ha	Road %	veh/d	% %	Helens	mm	mg/L
		n: C 1	ha Late	%	%	%	%	% 0	%	76	urban 0	27		rural 26	1.2	76	Venru	 ^ -	HEIGHS	700	2.8
finnesota		Riley Creek	1475	5		8	3	0	_	0			15	20	0.1			-		700	7.1
Hinnesota		Spring Creek	2256	1	100	40	1	8	17	2	32	01		20	6.3			_		1055	149
	Rolla	Frisco Lake	44.9	- 30	100	100	0	0		0	0			0	28	-		-	 	695	736
	Lincoln	39th & Holdrege	32	30		100	0	0		0				0	_			├─		693	828
	Lincoln	63rd & Holdrege	39.4	38			U	υ	U	U	- 0	50		U	20				 	695	1532
	Lincoln	78th & A Street	145	25	175000	50						שכ						\vdash	-	Account 1 miles	1332
	Lelystad	Pre-1977			83	- 50		17			1				-	-	 	—	-	 	39.5
	Lelystad	1982-1985	4.5	60		.50	•	17				_	_					├─		1050	74
Kew Hampshire		Parking Lot	2.5	90		0	0	100	0	0			-			-	-	-	-	1080	/- +
	Hightstown	Twin Rivers	14.7		100	62	0	0	_	38	0	_	0			 		 	-	1080	
	Hightstown	Twin Rivers 2	9.6		100	47	0	0	_	53	0			0		<u> </u>			-	1050	
New Jersey	Hillsborough		258		64	64	0	0		0			19	_		—		├—	-	1,000,000	
New Jersey	Lodi	Stormsewer A	73		100	30	12	58	0	0				0				_	-	1050	
New Jersey	Lodi	Stormsewer 8	9.8		100	23	5	42	_	0		_		_				<u> </u>	ļ	1050	
New Jersey	Lodi	Stormsewer C	166		100	95	0	5		0			-					<u> </u>	-	1050	
New Jersey	Lodi	Westerley Brook	215		100	41	11	15	_	12				-		_		_		1050	
New Jersey	Lodi	Milbank Brook			100	61	12	16	3	8			-			<u> _</u>	<u> </u>	L	↓	1050	
	Lodi	Lodi Brook			100	0	94	0	_	0		-	-		L			_	<u> </u>	1050	
	Lodi	Feld's Brook			100	0	97	0	3	0	0	0	0	0		<u> </u>		L		1050	
	New Brunswick	Mile Run			83	38	5	14										_	<u> </u>	1050	
	Trenton	East State Street	81.1		100	5	61	6	28	0	0	0	0	0		_	<u> </u>	_		1050	
	Trenton	Lwr Assunpink Ck			83													<u></u>		1050	
New Jersey	Trenton	Petti's Run	81.8		100	32	19	37	7	5	0	0	0	0						1050	
New York	Irondequoit Bay	Cranston Road	67	22	100		0	0	0	0	0	0	0	0	17					950	
New York	Irondequoit Bay	East Rochester	140	38		_	0	0	0	0	0	0	0	0	44				1	950	294
New York	Irondequoit Bay	Thornell Road	11508	4						17										950	154
New York	Irendequoit Bay	Thomas Creek	7180	11		-				17					2.5		1			950	63
	Irondequoit Bay	Southgate Road	72	21		0	0	100	0	1	0	0	0		+	+			1	950	141
			2125	1					Ť	17		-	 			-	1			950	17
	Lake George	English Brook	2162	i				 		17		 	\vdash	╁──		1	+	†	-	950	
	Lake George	West Brook	2102	7					-	 17		-	-	┼──	 '	1—	 	1-	1	950	
	Lake George	Sheriff's Dock		5		,	17	! 17	i 17	17		-	┼		+	╁	┼	╈	+	950	
	Lake George	Cedar Lane	31			114		1	1		_	0	0		37		+	+-	+-	1050	
	Long Island	Carll's R	30	20			0			-	 	+	-	-		\ —		╁	+	1050	
New York	Long Island	Unqua			100	-	0	0	0	0	0	0	0	1	' 	╂	╁	╁	+-	1063	-
	New York	Urban			83				<u> </u>		 	-	-	ļ	┼	┨	<u> </u>	╂	+	a a recommenda	
	Syracuse	Parking lot	16	83					<u> </u>		ļ	_	_ ل	<u>L</u>	 	83	·	╂—	4	950	
North Carolina		Sweeten Ck I			. 17			<u> </u>	<u> </u>		ļ		83		<u> </u>	 		4-	 	1038	
North Carolina	Asheville	Sweeten Ck 2			50		17		<u></u>	<u> </u>			50		 	╀—	 	4	Џ—	1031	
North Carolina	Asheville	Nasty Branch			83			50			<u> </u>	<u> </u>	<u> </u>	ļ		1_		Ļ		1031	
North Carolina	Asheville	Nasty Branch 3			83			:50			<u> </u>			<u> </u>		Щ	1	1_	<u> </u>	1038	
North Carolina	Charlotte	Ronaway Bay	28		50	.50							_ 5(<u> </u>			\perp		_ 1125	·
North Carolina	Durham	Third Fork	433	29			19	0	11	10		_			-	2	3	1	9	1100	
North Carolina		El	22.7		100		. 0	0	0	0	(() (<u> </u>					1100	
North Carolina		E2	106.4		100	50	17	17	0	1) () (L				110	
North Carolina		N2	773	ir p	100		17	17	0	25	() (L^{T}				110	25
North Carolina		WI	68.4		100		17	17	0) () () (110	
North Carolina		W2	83.8		100					14) () (0			T		110	
North Carolina		1-85		51				1				Т				8	3 2600	0		110	
	Winston-Salem	Site 1023	131	27					T			1		1	1	S		T		110	0 291
	Winston-Salem	Site 1013	93	69			_	100	0	(1			_	0		T		110	0 163
	Oslo	Site 2	10				-	83		⊢ '	· ·	 '	1	1	1	+		T		74	***
Korway	Osio	Site 3	37	43	83]		t^{-}	+	+-	+	†	15	5	†	†		79	_
Norway			37			- 63		-	+-	-	+	+	+	+-	12	_	+	T	1	75	
Norway	Osio	Site 4						-	╁	-	-	+	+	+-		}	+	十	+	86	
Norway	Trondheim	Site 2	20				_	-	-	-	+	+-	+-	+	╀-3	٦,	3 194	<u>- 1</u>	+	87	62
Norway	Lake Padderudvan	ia .	22	.83			L	j 	<u></u>	1	+	-	+	+	+-,	5 °	174	" -	+	99	///
Ohio	Cincinnati		11	37				17		j		+-	+	+	+	4-		+	+-	99	
Ohio	Cincinnati	Wooded hillside			_ 83			<u> </u>	-	83	-	-	-	1	-	١.	ـــــا پ	+	4	A . C . SHOOL	18
Okio	Cincinnati	Suburban street			83]	<u></u>	-	ļ	4	4	+-	-	∗	5	+	-		1
Ohio	Cincinnati	Business district			83			. 83			 	-	1_]		1	4	+	_	95	() <u> </u>
Ohio	Coshocton	Rural	processor to the second	!	17	1	į.	1	l	1	2	í	1	8	31	1	1	- 1	1	- 99	/Ki

								Ī	Vater Qua	lity								·		References
TotP	Totki	Pb	Zn	0&G		-	Cd	G	Ć:	Ki	Hg	Fe	Ma	Turb	pH	TOC		FecColi		
mg/L	mg/L	mg/L	mg/L	mg/L	mg/i	. mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	NTU		mg/L	#/100ml	#/100ml	#/100ml	
0.21	2.68			-	-	┼		ļ	ļ	ļ. <u>-</u>	-	-	<u> </u>				 			16
0.32 0.46	12.2				1	54	-	 	-	<u> </u>	 					-				16
U.40	1.04		 -		31	+		-	1		 	-		800		 		-		95 61, 89
					27			<u> </u>	 -	<u> </u>	<u> </u>	-	<u> </u>	779						61, 89
				 	8.7	_		ļ —			1	 		1129			-	-		61, 89
0.4	2.8	<u> </u>			6.4						 	0.76		112/	7.4		 	1000	-	133
0.13	2.81	0.0725	0.4503		3.6			0.0102	0.0128	0.015		1					 			1
0.273	291	0.208	0.513		17	98			0.104				-					300		3
		0.26	0.41					0.01	0.04	0.03										145
		0.11	0.34		<u> </u>			0.02	60.0	0.02										145
0.41						31.4														36
		1.25	0.6					0.02	127	0.06										145
		0.67	0.43					0.03	0.2											145
		0.61	0.31					0.03	0.14											145
		0.21	0.141			 -		0.007	0.02	0.022	<u> </u>	 		<u> </u>						144
		0.22	0.123	-				0.007	0.026	0.034	<u></u>									144
		0.354	0.132 0.138				·	0.194 0.046	0.031 0.044	0.022	<u> </u>					-				144
		ננש	U.136		17			U.U90	U.U44	0.018	<u> </u>	┝╼┤								144
		0.27	1.23		,	\vdash		0.11	0.1	0.08										141
								₩-11	<u>, , , , , , , , , , , , , , , , , , , </u>	2.00						-				141
		0.46	0.73					0.01	0.1	0.03										141
0301		0.034	0.415			33									$\neg \uparrow$				_	3
0.448	1	0.193	0.488			86												_		3
0.193		0.012	0.792			25														3
0.195		0.035	1.063			26									i					3
0.216		0.047	1.416			40														3
0.027	0.58	0.009																		3
0.052	1.25	0.038																		3
0.264	1.35	0.132																		3
0363	1.48	0.075				\rightarrow														3
0.221	2.22	0.000		-														5000		3
0.229	2.94	0.088	- 14			+	300.0	01/	0.46									4400		3
		1.54	1.6				0.025	0.16	0.46 0.49	0.15		3	0.23		7.7					69
	\dashv	0.05	0.025	0.5	1.1	15	0.025	0.025	0.02		0.000025	0.95	0.1		6.5					100 31
		0.15	0.08	2.5	3.5	27	0.025	0.025	0.07		0.000025	2.5	0.16	\dashv	6.9					31
$\overline{}$		0.05	0.085	2	5	15	0.025	0.025	0.02		0.00001.3	6	0.72		7.4					31 31
	_	0.2	0.14	4.5	9	32	0.025	0.025	0.02		0.00025	4.5	0.28		7.3					31
0.14		0.05	0.07						0.015			61		+						147
0.82		0.46	0.36			170		0.23	0.15	0.15		12	0.67	\dashv	7	42		23000		23
		0.26	0.22					0.13	0.11	0.05										145
		0.13	0.32					0.15	0.13	0.05			1							145
		0.32	0.27					0.16	0.12	0.05										145
		0.27	0.32					0.13	0.1	0.05]									145
		0.25	0.23					0.15	0.12	0.05										145
A 525		10.0	0.06	_		49								-	[117,118,17
0.529	2.2	0.254	0.178	+	11	90		-+	0.039									5400		3
0.395	2.73	0.382 0.82	0.533 1.73	\dashv	10	120 244			0.07								}	4800		3
0.5	4.9	0.1	0.17	-		73			0.52				-		\dashv	\dashv		 [73 73
0.8	5.9	0.05	0.32	\dashv	\dashv	63		+	0.13		-+			+		\dashv				<u>/3</u> 73
0.3	2.3	0.07	Q.I		-	74			0.03			$\overline{}$		+	\dashv					<u>73</u> 73
7		0.425	0.45	+		510	0.003		0.153	0.045		21	- 		+	33		-		41
	3.1				17	HI								176	7.5		58000	10900	20500	
																	9700	240	4200	
																	16000	1400	19500	
					\Box												76000	8600	32000	
]"	T						T									19000	730	24000	40

Country/State	Location Town/Area	Site	Area	scriptio Imp	Urban	Res	Ind	Com	inst	Land l Open	Other	Agr	For	Other	Pop.	Road	raffic Dens	Roof	lianeous MtSt	Annual Rain	22
COUNTY/SIZE	. Uniu Mi Es	ont.	ha	%	%	%	%	%	%	%	urban	%	%	nural	p/ha	1/4	veh/d	%	Helens	mm	mg/L
Ohio	Coshocton	Watershed 113	na na	/8	17	'	70	/8	/e	/8	uivdii	83	/6	14161	pr ua	74	TCILL	 ^ -	ालका	timit.	eng/L
Onio Onio	Coshocton	Watershed 118	+	-	17	-	H					83			A 11.0			├─			
		Watershed 185	-		•	_			-				-					-			
Ohio	Coshocton				. 17							83							-		
Ohio	Coshocton	Watershed 192	+		. 17							83									
Ohio	Coshocton	Watershed 196			17	<u> </u>						83						 			205
Oklahoma	Tulsa	Test area	4		100	4	47	9		25	15	0	0	0	30	15				839	205
Oklahoma	Tulsa	Test area 2			100	30		24	0	25	20	0		0	32	20				839	16
)klahoma	Tuisa	Test area 3			100	57	0		0	19	19	0		0	31	19				839	28
)kiahoma	Tulsa	Test area 4			100	25	18	28	0	6	23	0	0	0	38	23				839	34
Oklahoma	Tulsa	Test area 5 .	<u> </u>		100	53	0	H	0	16	20	0	0	0	42	20				839	13
Oklahoma	Tulsa	Test area 6			100	33	35	6	0	3	23	0	0	0	25	23				839	- 19
klahoma	Tulsa	Test area 7			100	65	0	10	0	1	24	0	0	C	44	24				839	1
)klahoma	Tulsa	Test area 8			100	52	5	11	0	4	28	0	0	0	54	28				839	24
Oldahoma	Tuls2	Test area 9			100	47	0	- 11	0	5	37	0	0	0	72	37	8			839	2
)kłahoma	Tulsa	Test area 10			100	16	0	18	0	16	50	0	0	0	66	50				839	3(
Oklahoma	Tulsa	Test area	1		100	45	5	_	0	4	42	0		0	52	42				839	4
Oklahoma	Tulsa	Test area 12	1		100	0	2		0	50	0	0	_	0		0		\vdash		839	
)klahoma	Tulsa	Test area 13		-	100	75	0		0	2	20	0	0	0	8	20		 		839	3
)kizhoma	Telsa	Test area 14	1		100	27	0	0	0	65	8	0	0	0	9	8		-	 	839	4
okianoma Oklahoma	Tuka	Test area 15	1		100	70	0	- 1	0	7	22	0	0	0	39	22		-	 	839	
	 		+		83			- 1	U		- 11	U	U	<u>U</u>	37			\vdash	 	1059	8
Dregon	Pertiand	Fanno Creek	30	F4		-							0					-		920	3
Pennsylvania	Butler	Locust Street	30	53	100	100	0	0	0	0	0	0	U	0	 -		F / 888	 	 	*** profes () 4 2540	
ennsylvania	Harrisburg	I-8i (urban)	-	45	83											-83	56000		 	958	
ennsylvania	Harrisburg	I-8i (rural)	1	27	17				-							83	24000			958	
ennsylvania	North Philadelphia		616		100	75	1	9		12	0	0		0	لسا		ļ	<u> </u>	<u> </u>	1063	
ennsylvania –	North Philadelphia		6.5		100	93	0	1	0	6	0	0	0	0					<u> </u>	1063	
ennsylvania	Central	Residential roof		100	83	83												100	ļ	950	<u> </u>
ennsylvania	Central	Residential street	1	83	83	83									لــــا	83				950	_
Pennsylvania	Central	Shopping centre			83			83												950	L
Pennsylvania	Central	Highway		83	83											83				950	
ennsylvania	Central	Business district			83			83												950	
thode Island	Cranston	1-95	44.8	83	83											83	101500			1050	5
thode Island	Warwick	Shopping centre	12.5		83			83									<u> </u>			1050	
luccia	Leningrad	Urban streets	1	83	83									2000	-	83	<u> </u>			554	145
		As-Salamah	182	29	83	50		.50					-			-	f -	1		76	-
andi Arabia		SWI	1		83	1							-			-		_	 	98	15
aedi Arabia		SW5	1		83					-		_					1	-	 	98	
	Nyaus	Stamford Canal trib.	65	22	83	. 83	-				-					-		┰	-	2314	
ingapore	D.,.1	Manhoro Canar Urb.	6.8	23								-						╁	 	1013	
outh Africa	Durban	11	0.8	20	8 3	83									<u> </u>			1-	+	613	
outh Africa		Unserviced informal	-		83	83		_				-			200	<u> </u>		-			
outh Africa		Serviced informal	-		83	83									200		ļ	<u> </u>	-	613	
		Permanent housing	1		83	83	\dashv		لــــا								-	—	 	613	
	Pretoria	Residential	1		83	83				17				ļ., "			<u> </u>	1_	<u> </u>	704	_
	Pretoria	Commercial	1		83	50		50										<u> </u>	<u> </u>	704	
		Heade St Drain	822		83	17	17	17	17	17								L	<u> </u>	405	-
		Hawthorne Drain			83											and March		<u></u>		405	
pain	Madrid	Composite		83	83											83				474	
	Goteborg	Vegagatan	5.8	53	83			83							250					749	
weden		Melibyieden	15.6	39	83			I							115			Г		749	
		Bergsjosvangen	4.8	44											85					749	
		Floda - suburban	18	14	83 83										22			Г		749	
		Yara - roofs	0.004	100	83	—	83	\dashv	\neg	\neg			_					100		749	-
		Lidkoping - roofs	0.004	100	83	83	١		\neg			_				 	 	100		749	
		Floda - bighway	0.007	83	83	w [\dashv	\dashv	\dashv	-	-		-		-	83		 '''	1	749	
			16	38	83 83	[. 82	-			-	-		112	زة	3100	1	1 .	749	-
		Bergsjon		35		83		83	\dashv			_			112	_	3100	+	 	2828 AV 200	_
		Torslanda	325		49	_			\dashv							<u> </u>	-	1	 	749	
		Urban	1		83	_						-			 	_		₩	 	555	
		Lake Trekanten	16		83										لبل			—	 	555	
		Kungsholmen	2		83											85	18000	1!	<u> </u>	555	
veden	Stockholm	Terrace houses	25		83	64		I	1	36		1			28		1	1	1	555	

									Water Qua	lity	·-···									References
Tot?	TotN	Pb	Zn	0&G	BOI	COL	Cd	Cr	Cu	Ni	lig	Fe	Ma	Turb	рН	TOC	TotColi	FecCali		HEIDERICE
mg/L	mg/L	mg/L	mg/L	mg/L	mg/	L mg/	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	HTU				#/100ml		
	}														İ		3000	8	1500	140
	l		<u> </u>													1	2500	1	610	140
	<u> </u>		1	<u> </u>	<u> </u>	-	<u> </u>			<u> </u>		<u> </u>				<u> </u>	3000	-		
	_		ļ	↓	<u> </u>	+	<u> </u>	 	<u> </u>		ļ	ļ		ļ. <u>.</u>		-	4400			
		ļ	<u> </u>	<u> </u>]	<u>.</u>	-	ļ								8100			
	-	↓	<u> </u>	 		3 11		 		<u> </u>	ļ	 		<u> </u>	<u> </u>		71000			22, 83
		 	-	┼		8 4			<u> </u>		 	 				<u> </u>	43000			22, 83
		ļ	ļ	+	1	8 6 4 10		+	 			 	ļ			-	100000			22, 83
		 	 	+	1			+	 			-	<u>. </u>			├	25000 150000			22, 83
		 	<u> </u>	+	1			+	-	-		 					140000			22, 83 22, 83
		 	 	+	_	B 4		 				+					32000			22, 83
				 	1:			 									240000			22, 83
				\dagger	11					 		-					400000			22, 83
		 	1	 				<u> </u>									130000			22, 83
					14	+											370000			22, 83
-				I		+						1	-				56000			22, 83
		<u> </u>	I														28000			22, 83
					11	53											5000	370		22, 83
					12	47											220000	350		22, 83
0.7	1.93						0.000	0.029	0.036	0.015			1.27							110
		0.47	0.3		30		<u> </u>											186000		49
		0.03	0.17			34					ļ									117,118,127
		0.1				31		0.07		2.22					-					117,118,127
		0.45		+			<u> </u>	0.05												62, 75, 145
0.04		0.5	0.43	+		├		0.01	0.04	0.03		-			4.					145 51
0.04 0.15				-		├		1		-					4.6 7.2					51 51
0.16						-									7.4	_				51 51
0.28						 									7.6					51
0.68															7.6					5!
		0.9	5.8		_		0.0031		0.128	·		5.75	0.37				·			58
		, ;																		57
					36												-			138
0.46	6.2	0.1				240	0.016		0.15			- 11								66, 67
0.33	6.7	0.04	0.95			260	0.013	_	0.12	0.06		21								68
0.38	6.6	0.03	0.25			180	0.004	0.14	0.13	0.08		6.7								68
1.8		0.07	0.06	21.6	4.4	27.1	0.05	0.05	0.01			0.22	0.05	115	13	4.2				20
0.303	2.059						0.000		2.21											121
		0.02	0.02				0.005		0.01			0.36			6.7			120000	9900	
		0.02 0.03	0.01				0.005		0.01			0.41			7			270000	3900	
	\longrightarrow	U.U.S	10.01	+	30	29	0.003					1.74			6.9		240000	22090	61000	
 -					34	28											230000			83, 138 83, 138
1.885	4.86	0.383			19	179								- 1			~ WWW	57000	_	3
+		0.253				195												21440		30
					\neg						•			_						14
0.37		0.4	0.57			117			0.31											77
0.19		0.14	0.32			70			0.19											17
0.4		0.16	0.26			89			0.03											77
A!	\Box	0.06	0.17	[ļ	ß			0.03]				77
0.17	7.1	0.016	0.31				0.0007		0.037											76
0.29		וכותה	0.34				0.001		0.029				·							76
0.29 0.12	4.5	0.012			J	- 1	0.0007		0.041		<u>.</u>									76
0.29		0.16	0.15		+			0 000-			6									
0.29 0.12 0.18	4.5	0.16 0.2	0.15 0.465	_	12		0.006	0.0025	0.27	0.024	0.0001		0.078							8
0.29 0.12	4.5	0.16			15	180		0.0025	0.27	0.024	0.0001		0.078				4000			Π
0.29 0.12 0.18	4.5	0.16 0.2 0.15	0.465		15 17	188	0.006	0.0025		0.024	0.0001		0.078				4000			77 83, 138
0.29 0.12 0.18	4.5	0.16 0.2				188		0.0025	0.27 0.865	0.024	0.0001		0.078				4000			Π

Table A1 Page 14

	Location		-	scriptio	,	_				Land I					Pop.		raffic		laneous	Annual	
Country/State	Town/Area	Site	Arez	Imp	Urban	Res	Ind	Com	Inst	Open	Other	Agr	For	Other		Road	Dens	Roof	MtSt	Rain	Z
	6. 11.1		ha	%	%	%	%	/	%	%	птрэи	%	%	rura	p/ha	%	veh/d	%	Helens	mm	mg/L
Sweden	Stockholm	Commercial	3.3	-	83	50		50		32					104					555	122
Sweden .	Stockholm	Highway	230				-		_	34	-	_				83	65000			555	282
Sweden Switzerland	Stockholm Zurich	Residential	9	35	. 83	59	7			34					57 [00					555	129 59
	Brush Creek	Schwamendingen Site 1	194	33	1	83						7,	13		100	_				1105	
iennessee Tananssee	†	Site 2	1705		3i 45	24 24			12	0	3	-	13			3				1500	
Tennessee	Brush Creek Brush Creek	Site 3	2191		53		2	2	11	0	5 8	_	13	0		5 8				1500 1500	
Tennessee	Brush Creek	Site 4	2863		58		3	4	10		10		-			10				1500	
Tennessee	Brush Creek	Site 5	3540		52	28	3	3	9	0	9		12	0		9				1500	
Tennessee	Brush Creek	Site 6	3669		50		3	3	9	0	8		13			8				1500	
Tennessee	Knoxville	R2	36	13	83	96	.,		7	·		31	13		10	- 0				1500	63
Tennessee	Knoxville	Ri	28	33	83	91									27					1500	611
	Knoxville	22	76	43	83 83	17	17	- 17	17	17					7						71
lennessee	Knoxville	CBD	11	99	100	0		100												1500	
lennessee		Fourth Creek	221			U	0		0	0	0	0	0	0	0					1500	123 730
ennessee	Knoxville	4,		45	83	PA	f n	83							6.2					1550	
Tennessee	Knoxville	Third Creek Plantation Hills	414 62	28 23	83	50	.50								18.8					1500	133 21
ennessee	Knoxville Nashville	Plantation Hills -40	02	37	83 83								_		8.6	22	00000	$\vdash \dashv$		1530	190
	Mashville Austin	Hart Lane	153	40	ಕು 83	99			\dashv	\dashv					- 33	- 83	88000	-		1143	156
ecas	Austin		153	21	100	100	0	0	0			-		- 0	22					1100	227
	Austin	Rollingwood	525			ıvu	U	U	U	0	0	0	0	Ų						1100	
lexas		Turkey Creek	1140	44	17	70							-	-I				_		1100	132
	Houston	Bintliff Ditch		25	70 37	50		.50_	_											1100	388
	Houston	Brays Bayou at S Main St	22400	16		17		17		<u>.</u> l					_					1100	
	Houston	Brays Bayou at Gessner S			21	-17	-			17		- 1								1100	787
	Houston	Hunting Bayou	803	21	94	48	14	32	0	0	0	0	0	- 6		_				1100	-
	Houston	Keegans Bayou	3210	12	20	. 17				17			_							1100	515
	Houston	Westbury Square	85	35	100	100	0	0	0	0	0	0	0	0						1100	61
	Hoeston	Woodlands P-10	6500	\dashv		_	4	_					83	-						1170	36
	Houston	Woodlands P-30	8750		10				_	-			83							1170	192
	Lubbock	Urban			83		_						_							500	530
	Chesapeake Bay	Pequea 3			17		-					83	_							1041	829
	Chesapeake Bay	Ware 7			17	\dashv						83	_							1041	222
	Chesapeake Bay	Occoquan 2			17		_	-	_			83								1041	361
	Chesapeake Bay	Occoquan 10			17		_	_	_			83	l							1041	121
	Chesapeake Bay	Occoquan 9			17	4	_	_					83							1041	70
	Chesapeake Bay	Pequea 2			17	_	_	_	_				83		_					1041	169
		Ware 8			17			_					83,		-					1041	71
	Chesapeake Bay	Occoquan i			17	\dashv		_1	_	_		83_								1041	670
		Occoquan 5			17	L	-		_	_		83	_							1041	145
	Chesapeake Bay	Pequez 4			83	83	_	_	_											1041	194
		Ware 5			83	83_	\dashv		_											1041	38
		Stonewall Road	19.5	19	83	83_	_	_	_				-					- 2.5		1041	
	Northern	Colchester Hunt	3.6	19	83	83_	_	_		\dashv		_								1041	
	Northern	Parkfairíax	19.5	25	83	83_	_	_	_											1041	
	Northern	Chaiet Woods	18.1	34	83	.83_	-	_	_				\dashv							1041	<u> </u>
	Northern	Allencrest/Neadows		39	83	83_	_	\downarrow						ightharpoonup						1041	
	Northern	Valleywood	3.6	42	83	83_	_	\dashv	_											1041	ļ
		Irongate	6.9	43	83 83	83_	_	\dashv	4	_						1				1041	
		Madison Apartments	18.2	47	83	83_	_	\perp	_			_								1041	L
		London Towne/Cavalier Chi		48	83	.83_		L											4 0	1041	<u> </u>
	Northern	Manassas Mali	8.3	89	83			83_	\dashv	_										1041	<u> </u>
		Parkington	10.4	90	83	_		83_	\dashv											1041	
		Seven Corners			83			83						[1041	<u> </u>
		Duncan Farm			17		\bot		\perp			83								1041	
		Cline Farm			17							83					i			1941	
		Farino Farm			17							83							100000	1041	<u> </u>
		Norman Forest			17								83							1041	
		Lower Bull Run	1680		100	69	1	9	5	16	0	0	0	0	18					840	
		Denver Street	80		100	95	0	0	5	0	0	0	0	0	35					840	
/ashington	Bellevue	Surrey Downs	38	29	100	100	0	0	0	0	0	0	0	0	22					866	113

				······			·· <u>·</u>		Vater Qual	itv			· ·						 -	Defense on
TotP	TotN	Pb	Za	O&G	BOD	COD	Cd	(r	Cu	Ni	Hig	Fe	Mn	Turb	рĦ	TOC	TotColi	FecColi	fectrep	References
mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L		NTU	-		#/100ml		#/100ml	
0.09			1	47																124
0.08		4		58																124
0.08	1.2				9				0.086											124
0.22	2.9	0.14	0.16		9		0.0008	0.003	0.014							14				111
		<u> </u>	<u> </u>		1.6							1								85
		<u></u>	ļ <u>.</u>		11											-				85
		<u> </u>		<u> </u>	- 11															85
					13															85
			ļ		3.8															85
					4															85
0.246	0.873				9				0.028									4400		3
0.705	[.7]		• • • • • • • • • • • • • • • • • • • •		14				160.0			<u> </u>						13500		3
0.352	1.21	0.237			14	60			0.042									4700		3
0.212	131	0.158			13	73			0.042									7300		3
1.2	3.1	0.21				109					0.0027	26		$\overline{}$						12
0.49	1.17	0.13				68					0.0004	3.1	0.38							12
0.46	1.62	0.05				33					0.002	13	0.05		_					12
0.355		0.41	0.26			113				_										117,118,127
0.333	4.64					82						! 				18.9		8400		3
0.268	5.88					70										32.5		14400		3
0.1	2.27					57										19.6		142		3
0.62			ļi																	8
1.08																				8
1.24	4.8				-+	84														8
1.81	9.0					04														1
1.1	2.2					42								-						8
0.062	1.35			- 		60	+													7
0.09	1.39				+	54														7
0.07	-137	-		-	25									+						7
4.7	19.2				-	\dashv	- +	-												83
0.62	13				-	\dashv			- 											54
1.67	6.6			$\neg \dagger$	-+					-										54
0.4	3.8					_				$\neg \neg$		-		-	$\overline{}$					<u>54</u> 54
0.13	0.9				+	_		-+							+	+		}		34
0.13	3.6				_ †									_		$\neg \uparrow$				7 SI
0.06	0.4															-	- +			~
1.12	· 6.2															_	 +			7
0.38	2.2					1														9
0.3	2.4													\neg	\neg					54
0.1	0.7												- +							54
		0.27										7			7			-		15, 55
		0.04										9.5			1					15, 55
		1.63			$oxed{\prod}$							8								4S, 55
[0.25										1.5								15, 55
		1										9						1		65, 55
		0.43						\Box				2								ls, ss
		0.46										3.5								CS, 55
		0.4				_						4				$\bot \bot$				LS, 5S
	\rightarrow	0.22			+							2			\perp					45, <u>55</u>
		0.6		_	+							5		\perp						15, 55
		1.75			-	+				$-\!$		7								15, 55
	$-\!\!\!\!+$	0.4		+	+	+						2			\dashv					15, S \$
		0.04							_			12			4					15, 55
	-	0.09		+	+	+						38			4					15, 55
	\dashv	0.02		+								6			_	_+				15, 55
0.98	1.67	0.04			+-				 -			95		_						15, 5 5
	4.67 3.84			+	+	+							-		\dashv	13.8				08, 109
1	2.04		0.124			48										28				08, 109

	Locatio			scriptio		1_			r	Land	_		-	,	Рор.		raffic		llaneous	Annual	
Country/State	Town/Area	Site	Area	imp	Urban	_	ind	_	inst	Open	Other	Agr		Other		Road	Dens	Roof	MtSt	Rain	22
	<u> </u>		ha	%	%	%	%	%	%	%	urban	%	%	rural	p/ba	%	veh/d	1/6	Helens	mm	mg/L
Washington	Believue	Lake Hills (NURP)	41	37	3	_									30	L				866	127
Washington	Seattle	View Ridge !	255	<u> </u>	101	_						-						<u> </u>		866	56
Washington	Seattle	View Ridge 2	42	<u> </u>	100	-			-		-	-	-							866	108
Washington	Seattle	South Seattle	11.1		100			_				0								866	114
Washington	Seattle	South Center	9.8		100		-	100	0		-	0							<u> </u>	866	94
Washington	Seattle	Lake Hills (Huber)	61	-	100				0	0	0	0	0	0						866	61
Washington	Seattle	Highlands	34		100	1		0	0	0	0	0	0	0						866	109
Washington	Seattle	Whispering Heights	. 31		83	83														866	9.6
Washington	Seattle	Bus depot	6	90	83			83												866	88
Washington		Rusty galv. iron roof		001	17	2												83		1000	
Washington		Weathered metal roof		100	17	_												83		1000	
Washington		Tar paper roof		100	17					9								83		1000	
Washington		Tarred roof		100	17													83		1000	
Washington		Anodised aluminium roof		100	17													83		1000	
Washington	Seattle	1-5	0.49	100	83	83										83	53000			866	106
Washington	Seattle	I-5*		100	83	83										83	53000			866	131
Washington	Seattle	SR-520	0.04	100	83											83	42000			889	244
Washington	Vancouver	I-205	0.11	100	83											83	8600		I	991	106
Washington	Snoqualmie Pass	1-90	0.072	100	17								83			83	7700		1	2464	63
Washington	Montesano	SR-12	0.11	100	. 17							83				83	7300		1	2134	798
Washington	Pasco	SR-12	0.51	100	.17							83				83	2000		1	191	570
Washington	Spokane	1-90	0.089	100	83											83	17300		1	437	370
Washington	Puliman	SR-270E	0.099	100	.17							83				83	2500	_	i	457	622
Washington	Yakima River	1			17								83							2000	
Washington	Tieton River				17								83					-		2000	
	Cedar River				17				\neg				83							2000	
	Madison	Monroe	94.4		100	97	0	3	0	0	0	0	0	0		15	-	13		788	262
	Madison	Syene	115.6		100	0	100	0	0	0	0	0	0		_	7		21		788	146
		Resid feeder streets		83	83	:83	100	-	-		- 1		-	1		83	250			788	662
		Resid collector streets		83	83	83		_	-							83	5000			788	326
		Resid lawns		17	83	. 83						-			-		3000			788	397
		Resid driveways		4.	83	83	\dashv			-							-			788	173
		Resid roofs	+	100	83	83		-	-					-1	-1			100		788	27
Visconsin		Comm arterial streets	8	83	83			83	-				-		-	83	20000	100		788	232
		Comm roofs	1.0	100	83			83				-		-		85	20000	100		788	15
		Comm parking lots	—,	83	83			83	+			-	-			-		100		788	58
		Indust collector streets		83	83		83	ه ا	\dashv						\dashv	02	1000			4000	763
		Indust conector streets		83	83		83 83	\dashv	\dashv	-		\dashv	-		$-\!\!\!\!-\!\!\!\!\!\!-$	83	1000			788 700	690
		Indust roofs	T	100	83		-		\dashv							. 83	19800	tar		788	
							83_	\dashv	+									100		788	41
		Indust parking lots Manitou Way	50	83	83	67	83													788	312
				27	83	83	_	_	_	_,										788	280
		Kinnickinnic River	6436	100	88	51	9	8	0	6	14					ا_ا				701	
		Hwy 795		100	83		\dashv		4							83	53000			701	183
		Hwy 45		31	83		-		-	_		\rightarrow				83	85000			701	343
		Hwy 94		64	83		_						_			83	116000			701	161
		Stadium l'change	65	45	100	17	0	14	0	28	41	0	0	0		41				701	29.6
		Burbank	26	50	100	100	0	0	0	0	0	0	0	0	37					701	266
		Hastings	13.4	51	100	100	. 0	0	0	0	0	0	0	0	42					701	170
		Lincoln	14.6	57	83	97									44	à				701	251
		Wood Center	18	81	100	35	52	13	0	0	0	0	0	0	30					701	383
		Post Office	4.9	100	100	0	0	100	0	0	0	0	0	0	0		2			701	212
fisconsin	Hilwaukee	Rustler	4.9	100	100	0	0	100	0	0	0	0	0	0	0	15				701	202
ris consin	Milwaukee !	State Fair	11.7	77	100	37	0	63	0	0	0	0	0	0	25		(701	412

									Vater Quai	ity	_									References
TotP	Totk	Pb	Zn	086	BOD		G	Û	Cu	Ni	Hg	Fe	Ma	Tarb	рΗ	TOC	TotColi	FecColi	FecStrep	
mg/L	mg/L	ing/L	mg/L	mg/L	mg/L	_	mg/L	mg/L	mg∕L	mg/L	mg/L	mg/L	mg/L	NTU		mg/L	#/100ml	#/100ml		
0.264		0.192	0.12			44			0.022											3
0.26	2.69		0.072	12.5				0.019	0.024			2.015		129	6.8		26100	8280		61
<u> </u>	1.7		0.052	20				0.0092	0.049			0.912		27	7.3		17000	5910		61
0.24	2.47	+	0.234	12			0.005	0.018	0.12			4.237		23	6.8		11400	485		61
0.18	1.53			11	12		0.021	0.105	0.07			0.806		11.6	6.5		2650	67		61
0.32	1.24		0.062	9.5			0.0044		0.081			0.289		11.2	7.4		11900	3630		61
	2.38	0.103	0.044	9.5	4.2	65	0.0045	0.01	0.159			0.345		26	7.2		3050	1560		61
<u> </u>																				26
0.118		0.03	0.53	9.9		_	0.00079													26
<u> </u>		0.302	12.2			<u> </u>			0.02						5.9					43
		0.01	1.98						110.0						4.8					43
		0.011	0.877						0.166						4.3					43
		10.0	0.297						0.825						4.1					43
		0.015	0.101						0.016						5.9					43
0.226	2.46		0.638			150			0.043											2, 21, 127
0.224	2.69	_	0.968			135			0.043											2, 21, 127
		1.065	0.28																	2, 21, 127
0.113	56.6	0.073	0.056			45			0.025											2, 21, 127
0.15	1.03	0.086	101.0			44			0.022						_					2, 21, 127
0.441	2.65	0.556	0.38			109			0.089											2, 21, 127
0.666	9.42	0.196	0.352			265			1.039											2, 21, 127
0.998	8.36	0.167	0.929	-		219			7.033						[2, 21, 127
18.0	1.94	0.227	0.199			110			0.044											2, 21, 127
0.07	0.28																			74
0.115	0.194				∤									_						74
0.022																				74
0.66		0.032	0.203				0.0004	0.005	0.016					\rightarrow				175000		6
0.34		0.025	0.265				100.0	0.006	0.028									5100		6
131		0.033	0.22				0.0008	0.005	0.024									92000		6
1.07		0.055	0.339	-+			0.0014	0.012	0.056									57000		6
2.67			0.059				2 2222		0.013									42000		6
1.16		0.017	0.107				0.0005	0.002	6.017					\rightarrow			-	34000		6
0.15		0.021	0.149						0.015						 .ļ			294		6
0.47		0.05	0.508	-+		 -	0.0018	0.016	0.046					\rightarrow				9600		6
0.2		0.009	0.33		\dashv		0.0004		0.009					-	-			0011		6
0.19		0.022	0.178	-	\dashv	-+	0.0006	0.005	0.015									1800		6
1.5		0.086	0.479	-+	\rightarrow		0.0033	0.015	0.076									8300		6
0.94		0.06	0.575		+		0.0025	0.023	0.074								-	4600		6
0.11		800.0	1.155	+	-	+	0.001	0.01	0.006	\longrightarrow	+							144		6
0.39	4 **	0.038	0.304				0.001	0.012	0.041						-+			2760		6
0.98	4.55	+		$\overline{}$		\rightarrow		- 												70
<u> </u>	1.5	7.63	0.44	+	15	120		 -}-				-								136
		2.03	0.46	\dashv	-+	130		 +												117,118,127
		0.88	0.44			134						 -			\dashv	- +				117,118,127
		0.9	0.52		\dashv	122		\dashv	+	-+		-								117,118,127
0.24	204	0.46	0.10/		-	39			 -						736					93
0.229	2.04 1.73	0.095	0.106		7 9	41					-+	\rightarrow			+					3, 94
0.453	1-/5	0.108	0.108	+	18	91				-+				-	\dashv					3, 94
0.289	2.2	0.582	0.476	-+	14	92			 +-			-+			-+		+			3, 94
0.108	1.73	0.193	0.145		9	57														3, 94 3, 94
0.105	1.85	0.121	0.156	+	13	59	-		-	+			-+	-+	\dashv	\rightarrow				3, 94 3, 94
0.511	2.44	0.409	0.28		19	113	+	+		$\overline{+}$	+			+	\dashv	-		 		3, 74 3, 94
4011	4.77	U.797	9.20	1.	17	113			Į.		1	1_								J, 77

Appendix A

Key to References

	Key to References							
Number		Number		Number	Reference			
1		53	1	105	Polls & Lanyon 1980			
2	'	54	Hartigan et al. 1983	106	1			
3		55	Helsel et al. 1979	107	Qureshi & Dutka 1979			
4		56	Henley et al. 1980	108	Randall et al. 1975			
5		57	Hoffman et al. 1982	109	Randall et al. 1977			
6	1	58	Hoffman et al. 1985	110	Rinella & McKenzie 1982			
7	1	59	Holler 1989	111	Roberts et al. 1977			
8	Bedient et al. 1980	60	Horkeby & Malmquist 1977	112	Schlossnagle et al. 1981			
9	Bellinger et al. 1982	61	Huber et al. 1979	113	Sear & Bays 1991			
10	1	62	Hunter et al. 1979	114	Sekine et al. 1990			
11	Bennett et al. 1981	63	Hvitved-Jacobsen et al. 1984	115	Sharpin 1993			
12	Betson 1978	64	Hvitved-Jacobsen et al. 1987	116	Sharpin 1995			
13	Bliss et al. 1979	65	Ichiki et al. 1993	117	Shelley & Gaboury 1986			
14	Bomboi & Hemandez 1991	66	Ishaq & Khararjian 1988	118	• -			
15	Booth et al. 1967	67	Ishaq & Khararjian 1990	119	Sim & Webster 1992			
16	Brown 1984	68	Ishaq 1992	120	}			
17	Brown 1988	69	Klein et al. 1974	121	I			
18	Burm et al. 1968	70	Kluesener & Lee 1974	122				
19	Chandra et al. 1993	71	LaBarre et al. 1973	123	Smalls 1987			
20	Chui 1993	72	Lammersen 1993	124				
21	Chui et al. 1982	73	Lindholm & Balmer 1978	125	· · · · · · · · · · · · · · · · · · ·			
22	Cleveland et al. 1970	74	Loehr 1974	126				
23	Colston & Tafuri 1975	75	MacKenzie & Hunter 1979	127	"			
24	Cordery 1977	76	Malmquist & Hard 1981	128				
25	D'Andrea & Maunder 1993	77	Malmquist & Svensson 1977	129				
26	Dally 1984	78	Mance & Harman 1978	130				
27	DeFilippi & Shih 1971	79	Marsalek 1990	131				
28	Dept of Territories 1986	80	Marsajek 1991	132	· · · · · · · · -			
29	Deutsch & Hemain 1984	81	Martin & Miller 1987	133				
30	Di Toro 1984	82	Martin 1988	134	Wada & Miura 1984			
31	Duda et al. 1982	83	McElroy & Bell 1974	135				
32	Dugan 1981	84	McNamara & Cowell 1987	136				
33	Eganhouse & Kaplan 1981	85	Meadows et al. 1978	137				
. 34	Ellis 1979	86		138				
35	Ellis et al. 1987	87	Melanen 1984	139				
36	Ferrara & Witkowski 1983	88	Murakami & Nakamura 1990	140				
37	Finnemore & Lynard 1982	89	Nebraska University 1974					
38	Forster 1990	90	Ng & Marsalek 1984	141 142	• • • • • • • • • • • • • • • • • • • •			
39	Gannon & Busse 1989	91	Ng 1987		• •			
40	Geldreich et al. 1968	F	Ngo et al. 1992	143 144	• • • • • • •			
41	Gjessing et al. 1984	93	Novotny & Kincaid 1981	1	Wilber et al. 1980			
42	Goettle 1978	l l	Novotny et al. 1985		Wright 1993			
43	Good 1993		Oliver & Grigoropoulos 1981	147	-			
44	Green 1993		Oliver et al. 1974		Xanthopoulos & Hahn 1993			
45	Griffin et al. 1980	1	Olivieri et al. 1978		Yassini & Clarke 1986			
46	Grizzard et al. 1986	1	O'Shea & Field 1992	•	Yaziz et al. 1989			
47	Grottker 1987		Ostry 1982		Yousef et al. 1985			
48	GH&D et al. 1981		Owe et al. 1982		Yousef et al. 1986a			
	Hajas et al. 1978		Palmer 1950	1	Yousef et al. 1986b			
1	Hall & Anderson 1988		Paimer 1963		Zhen-Ren et al. 1993			
	Halverson et al. 1984		Palmgren & Bennerstedt 1984	104	216111 CLQL 1333			
	Hamilton et al. 1987		Pitt 1979					
ŲŽ	i mithion of all 1907	104	1 m 1313					

APPENDIX B

Descriptive Statistics

Descriptive statistics are tabulated for all quality parameters considered and all observed land uses. Units are as shown in the page heading, and with only one exception (pH) are in log coordinates. The land use classification system is described in Chapter 2. Intending users should particularly note the sample size for the subgroups of interest, as some samples are very small.

Suspended Solids

log(mg/L)

Roads:							
SS	All roads	MtStHelens	All others	High urban	Low urban	All roofs	
Mean	2.324	2.609	2.286	2.410	1.836	1.553	
Std Error	0.084	0.156	0.092	0.086	0.235	0.116	
Median	2.315	2.756	2.265	2.365	1.806	1.613	
Mode	2.025					1.556	
Std Dev	0.544	0.348	0.557	0.464	0.665	0.384	
Variance	0.296	0.121	0.310	0.215	0.442	0.148	
Kurtosis	2.602	2.684	2.968	6.361	1.434	2.619	
Skewness	0.427	-1.627	0.613	1.863	0.894	-1.289	
Range	3.208	0.877	3.208	2.455	2.182	1.450	
Minimum	0.954	2.025	0.954	1.708	0.954	0.643	
Maximum	4.163	2.902	4.163	4.163	3.137	2.093	
Sum	97.614	13.045	84.569	69.881	14.688	17.084	
Count	42	5	37	29	8	11	
95%	0.164	0.305	0.180	0.169	0.461	0.227	

High urban excluding roads & roofs:

SS	All high	Residential	Industrial	Commercial	Other high
Mean	2.186	2.150	2.176	2.126	2.241
Std Error	0.030	0.043	0.150	0.084	0.052
Median	2.182	2.167	2.127	2.111	2.228
Mode	2.447	2.193			2.447
Std Dev	0.478	0.448	0.518	0.418	0.518
Variance	0.228	0.200	0.268	0.175	0.269
Kurtosis	0.630	0.960	1.371	0.047	0.255
Skewness	0.141	-0.359	0.321	0.409	0.356
Range	2.980	2.802	2.067	1.674	2.394
Minimum	0.544	0.544	1.204	1.342	1.130
Maximum	3.524	3.346	3.271	3.016	3.524
Sum	540.001	234.377	26.107	53.144	226.373
Count	247	109	12	25	101
95%	0.060	0.084	0.293	0.164	0.101

SS	All medium	All low	Agricultural	Forest	Other low
Mean	2.248	2.040	2.271	1.905	1.971
Std Error	0.199	0.080	0.125	0.092	0.134
Median	2.153	2.052	2.122	1.851	1.982
Mode		2.000	2.000		1.519
Std Dev	0.689	0.565	0.467	0.305	0.672
Variance	0.475	0.320	0.218	0.093	0.452
Kurtosis	-0.527	0.120	-1.443	-1.953	-0.500
Skewness	-0.136	-0.408	0.264	-0.054	-0.479
Range	2.242	2.471	1.265	0.752	2.449
Minimum	0.964	0.447	1.653	1.531	0.447
Maximum	3.205	2.919	2.919	2.283	2.896
Sum	26.973	102.007	31.792	20.951	49.264
Count	12	50	14	11	25
95%	0.390	0.157	0.244	0.180	0.263

Total Phosphorus iog(mg/L)

Roads:						Roofs:
Total P	All roads	MtStHelens	All others	High urban	Low urban	Roofs
Mean	-0.532	-0.314	-0.586	-0.583	-0.598	-0.890
Std Error	0.087	0.169	0.099	0.123	0.081	0.120
Median	-0.553	-0.177	-0.624	-0.648	-0.555	-0.872
Mode	-0.824		-0.824			
Std Dev	0.436	0.377	0.441	0.491	0.163	0.293
Variance	0.190	0.142	0.194	0.241	0.026	0.086
Kurtosis	-1.009	2.675	-0.766	-1.229	1.259	1.699
Skewness	-0.068	-1.623	0.183	0.160	-1_248	-0.966
Range	1.469	0.946	1.469	1.469	0.368	0.860
Minimum	-1.292	-0.947	-1.292	-1.292	-0.824	-1.398
Maximum	0.176	-0.001	0.176	0.176	-0.456	-0.538
Sum	-13.295	-1.571	-11.724	-9.334	-2.391	-5.338
Count	25	5	20	16	4	6
95%	0.171	0.331	0.193	0.240	0.159	0.234

High urban excluding roads & roofs:

Total P	All high	Residential	Industrial	Commercial	Other high	Non-resid
Mean	-0.454	-0.396	-0.531	-0.482	-0.499	-0.498
Std Error	0.026	0.036	0.094	0.079	0.045	0.037
Median	-0.436	-0.410	-0.469	-0.599	-0.420	-0.447
Mode	-0.337	-0.523		0.079	-0.337	-0.337
Std Dev	0.377	0.342	0.281	0.381	0.416	0.398
Variance	0.142	0.117	0.079	0.145	0.173	0.159
Kurtosis	1.145	0.332	-1.200	-0.671	1.464	1.205
Skewness	-0.341	0.174	-0.330	0.613	-0.747	-0.516
Range	2.612	1.748	0.788	1.304	2.438	2.438
Minimum	-2.000	-1.137	-0.943	-0.979	-2.000	-2.000
Maximum	0.612	0.612	-0.155	0.325	0.438	0.438
Sum	-93.436	-35.658	-4.780	-11.088	-41.909	-57.778
Count	206	90	9	23	84	116
95%	0.052	0.071	0.184	0.156	0.089	0.072

Total P	All medium	All low	Agricultural	Forest	Other low
Mean	-0.502	-0.663	-0.271	-1.136	-0.643
Std Error	0.145	0.067	0.120	0.093	0.079
Median	-0.509	-0.683	-0.303	-1.155	-0.650
Mode		-0.699		-0.886	-1.000
Std Dev	0.434	0.516	0.450	0.337	0.455
Variance	0.188	0.266	0.203	0.113	0.207
Kurtosis	-1.013	-0.399	0.643	-0.843	-0.720
Skewness	0.136	0.143	0.198	-0.151	-0.020
Range	1.246	2.330	1.809	1.056	1.826
Minimum	-1.097	-1.658	<i>-</i> 1.137	-1.658	-1.569
Maximum	0.149	0.672	0.672	-0.602	0.258
Sum	-4.517	-39.762	-3.796	-14.762	-21.204
Count	9	60	14	13	33
95%	0.284	0.130	0.236	0.183	0.155

Total Nitrogen log(mg/L)

Roads:				Roofs:
Total N	All roads	MtStHelens	All others	All roofs
Mean	0.491	0.872	0.333	0.752
Std Error	0.110	0.258	0.085	0.099
Median	0.371	0.922	0.342	0.752
Mode	0.079		0.079	
Std Dev	0.455	0.577	0.295	0.140
Variance	0.207	0.333	0.087	0.020
Kurtosis	2.385	0.563	0.144	
Skewness	1.416	0.856	0.846	
Range	1.775	1.465	0.909	0.198
Minimum	-0.022	0.288	-0.022	0.653
Maximum	1.753	1.753	0.886	0.851
Sum	8.353	4.360	3.993	1.504
Count	17	5	12	2
95%	0.216	0.506	0.167	0.194

High urban excluding roads & roofs:

Total N	All high	Residential	Industrial	Commercial	Other high
Mean	0.422	0.443	0.392	0.332	0.423
Std Error	0.024	0.039	0.103	0.063	0.036
Median	0.393	0.426	0.342	0.267	0.348
Mode	0.342	0.491			0.146
Std Dev	0.282	0.294	0.253	0.226	0.287
Variance	0.080	0.086	0.064	0.051	0.082
Kurtosis	0.796	1.469	3.102	-1.089	0.213
Skewness	0.703	0.562	1.523	0.001	0.827
Range	1.423	1.404	0.740	0.731	1.281
Minimum	-0.155	-0.155	0.124	-0.046	-0.013
Maximum	1.268	1.249	0.864	0.685	1.268
Sum	58.615	25.717	2.355	4.320	26.223
Count	139	58	6	13	62
95%	0.047	0.076	0.203	0.123	0.071

Total N	All medium	All low	Agricultural	Forest	Other low
Mean	0.538	0.314	0.591	-0.075	0.344
Std Error	0.169	0.059	0.103	0.103	0.068
Median	0.385	0.349	0.639	-0.023	0.365
Mode		0.342			0.097
Std Dev	0.337	0.426	0.385	0.355	0.348
Variance	0.114	0.182	0.149	0.126	0.121
Kurtosis	3.858	0.263	1.367	-0.080	2.575
Skewness	1.959	-0.403	-0.682	-0.242	-0.868
Range	0.703	1.995	1.584	1.269	1.785
Minimum	0.338	-0.712	-0.301	-0.712	-0.699
Maximum	1.041	1.283	1.283	0.556	1.086
Sum	2.150	16.314	8.267	-0.906	8.952
Count	4	52	14	12	26
95%	0.330	0.116	0.202	0.201	0.134

Chemical Oxygen Demand log(mg/L)

Roads:						Roofs:
COD	All roads	MtStHeiens	All others	High urban	Low urban	All roofs
Mean	1.891	2.099	1.856	1.828	1.905	1.342
Std Error	0.072	0.136	0.080	0.111	0.109	0.000
Median	2.037	2.041	1.994	2.079	1.778	1.342
Mode	1.690		1.690			
Std Dev	0.426	0.304	0.438	0.484	0.361	
Variance	0.182	0.092	0.192	0.234	0.131	
Kurtosis	-0.084	-0.081	-0.224	-0.854	1.159	
Skewness	-0.580	-0.609	-0.483	-0.761	1.174	
Range	1.799	0.770	1.799	1.552	1.216	0.000
Minimum	0.908	1.653	0.908	0.908	1.491	1.342
Maximum	2.708	2.423	2.708	2.461	2.708	1.342
Sum	66.176	10.496	55.680	34.730	20.950	1.342
Count	35	5	30	19	11	1
95%	0.141	0.266	0.157	0.217	0.214	

High urban excluding roads & roofs:

COD	All high	Residential	Industrial	Commercial	Other high	Non-indust
Mean	1.903	1.883	2.222	1.924	1.890	1.891
Std Error	0.027	0.036	0.154	0.093	0.045	0.027
Median	1.886	1.863	2.185	1.927	1.875	1.863
Mode	1.778	1.708			1.653	1.778
Std Dev	0.352	0.315	0.376	0.415	0.363	0.347
Variance	0.124	0.099	0.141	0.172	0.132	0.120
Kurtosis	1.246	1.007	-2.903	2.013	1.482	1.401
Skewness	-0.051	0.014	0.095	0.400	-0.413	-0.087
Range	2.314	1.953	0.807	2.009	2.136	2.314
Minimum	0.699	0.929	1.826	1.004	0.699	0.699
Maximum	3.013	2.883	2.633	3.013	2.835	3.013
Sum	313.986	141.199	13.329	38.484	120.973	300.656
Count	165	75	6	20	64	159
95%	0.054	0.071	0.301	0.182	0.089	0.054

COD	All medium	All low	Agricultural	Forest	Other low
Mean	1.655	1.528	1.401	1.355	1.633
Std Error	0.081	0.106	0.685	0.249	0.078
Median	1.544	1.555	1.401	1.454	1.555
Mode	1.477	1.398		•	1.398
Std Dev	0.230	0.411	0.969	0.497	0.233
Variance	0.053	0.169	0.939	. 0.247	0.054
Kurtosis	-1.744	0.247		-2.384	-0.855
Skewness	0.643	-0.816		-0.635	0.605
Range	0.542	1.370	1.370	1.046	0.647
Minimum	1.431	0.716	0.716	. 0.732	1.398
Maximum	1.973	2.086	2.086	1.778	2.045
Sum	13.241	22.916	2.802	5.419	14.695
Count	8	15	2	4	9
95%	0.160	0.208	1.343	0.487	0.152

Biochemical Oxygen Demand log(mg/L)

Roads:		Roofs:
BOD	High Urban	High Urban
Mean	1.217	0.602
Std Error	0.098	0.000
Median	1.203	0.602
Mode	1.556	
Std Dev	0.278	
Variance	0.077	
Kurtosis	-1.136	
Skewness	-0.184	
Range	0.711	0.000
Minimum	0.845	0.602
Maximum	1.556	0.602
Sum	9.735	0.602
Count	8	1
95%	0.193	

High urban excluding roads & roofs:

BOD	All high	Residential	Industrial	Commercial	Other high
Mean	1.137	1.143	1.075	1.169	1.130
Std Error	0.025	0.036	0.042	0.055	0.041
Median	1.137	1.137	1.079	1.114	1.145
Mode	1.079	1.079		1.230	1.279
Std Dev	0.280	0.256	0.073	0.183	0.319
Variance	0.078	0.065	0.005	0.033	0.102
Kurtosis	1.653	-0.394		0.872	1.996
Skewness	0.605	-0.026	-0.250	0.674	0.875
Range	1.687	1.030	0.146	0.652	1.687
Minimum	0.477	0.623	1.000	0.903	0.477
Maximum	2.164	1.653	1.146	1.555	2.164
Sum	144.437	58.279	3.225	12.857	70.076
Count	127	51	3	11	62
95%	0.049	0.070	0.083	0.108	0.079

BOD	All medium	All low
Mean	0.869	0.576
Std Error	0.078	0.161
Median	0.970	0.452
Mode	1.041	0.301
Std Dev	0.246	0.454
Variance	0.060	0.206
Kurtosis	-1.941	-0.823
Skewness	-0.293	0.666
Range	0.632	1.281
Minimum	0.544	0.041
Maximum	1.176	1.322
Sum	8.691	4.610
Count	10	8
95%	0.152	0.315

Oil and Grease

log(mg/L)

Roads:

All Roads	High Urban	Low Urban
1.193	2.032	0.633
0.364	0.269	0.164
0.846	2.032	0.741
•		
0.815	0.380	0.283
0.664	0.145	0.080
-1.546		
0.563		-1.467
1.989	0.538	0.535
0.312	1.763	0.312
2.301	2.301	0.846
5.964	4.064	1.899
5	2	3
0.714	0.527	0.320
	1.193 0.364 0.846 0.815 0.664 -1.546 0.563 1.989 0.312 2.301 5.964	1.193 2.032 0.364 0.269 0.846 2.032 0.815 0.380 0.664 0.145 -1.546 0.563 1.989 0.538 0.312 1.763 2.301 2.301 5.964 4.064 5 2

High urban excluding roads & roofs

111311					
Oil & Grease	All High	Residential	Industrial	Commercial	Other High
Mean	0.942	0.917	0.965	1.191	0.870
Std Error	0.076	0.095	0.051	0.118	0.203
Median	0.978	0.978	0.959	1.124	0.599
Mode	1.097	1.097			
Std Dev	0.437	0.367	0.101	0.237	0.642
Variance	0.191	0.135	0.010	0.056	0.412
Kurtosis	-0.131	3.382	-3.589	0.842	-2.107
Skewness	-0.413	-1.602	0.191	1.234	0.344
Range	1.769	1.431	0.218	0.523	1.496
Minimum	-0.097	-0.097	0.862	0.996	0.176
Maximum	1.672	1.334	1.079	1.519	1.672
Sum	31.075	13.756	3.858	4.762	8.698
Count	33	15	4	4	10
95%	0.149	0.186	0.099	0.232	0.398

Oil & Grease	Med/Low
Mean	-0.042
Std Error	0.221
Median	-0.222
Mode	
Std Dev	0.383
Variance	0.146
Kurtosis	
Skewness	1.649
Range	0.699
Minimum	-0.301
Maximum	0.398
Sum	-0.125
Count	3
95%	0.433

Total Organic Carbon log(mg/L)

Roads:	
TOC	All roads
Mean	1.671
Std Error	0.186
Median	1.519
Mode	
Std Dev	0.323
Variance	0.104
Kurtosis	
Skewness	1.649
Range	0.590
Minimum	1.452
Maximum	2.041
Sum	5.012
Count	3
95%	0.365

High urban excluding roads & roofs:

TOC	All high	Residential	Other high
Mean	1.382	1.205	1.496
Std Error	0.054	0.100	0.040
Median	1.447	1.276	1.470
Mode	1.447		1.322
Std Dev	0.259	0.300	0.149
Variance	0.067	0.090	0.022
Kurtosis	2.621	0.279	-0.391
Skewness	-1.334	-0.990	0.462
Range	1.162	0.889	0.507
Minimum	0.623	0.623	1.279
Maximum	1.785	1.512	1.785
Sum	31.792	10.842	20.951
Count	23	9	14
95%	0.106	0.196	0.078

Low urban excluding roads & roofs:

TOC	All low
Mean	1.312
Std Error	0.073
Median	1.292
Mode	
Std Dev	0.127
Variance	0.016
Kurtosis	
Skewness	0.676
Range	0.251
Minimum	1.196
Maximum	1.447
Sum	3.935
Count	3
95%	0.143

pH pH units

Roads:		Roofs:		
pΗ	Roads	All roofs	High urban	Low urban
Mean	6.925	5.657	6.022	5.000
Std Error	0.262	0.301	0.376	0.385
Median	7.000	5.900	6.500	4.800
Mode		6.900	6.900	5.900
Std Dev	0.740	1.126	1.127	0.860
Variance	0.548	1.267	1.269	0.740
Kurtosis	0.681	-1.616	-1.209	-2.955
Skewness	-0.971	-0.098	-0.702	0.247
Range	2.200	3.200	3.100	1.800
Minimum	5.500	4.100	4.200	4.100
Maximum	7.700	7.300	7.300	5.900
Sum	55.400	79.200	54.200	25.000
Count	8	14	9	5
95%	0.513	0.590	0.736	0.754

High urban excluding roads & roofs:

nigh urban e	Actualing roa	aus & roois:			
pН	All high	Residential	Industrial	Commercial	Other high
Mean	6.922	6.860	7.100	6.717	7.067
Std Error	0.092	0.114	0.453	0.342	0.167
Median	7.000	6.990	7.150	6.900	7.150
Mode	7.300	7.300			7.400
Std Dev	0.635	0.559	0.906	0.838	0.623
Variance	0.403	0.312	0.820	0.702	0.389
Kurtosis	-0.198	0.332	-1.117	-2.384	0.575
Skewness	-0.385	-0.859	-0.264	-0.319	-0.136
Range	2.800	2.200	2.100	1.900	2.500
Minimum	5.500	5.500	6.000	5.700	5.800
Maximum	8.300	7.700	8.100	7.600	8.300
Sum	332.270	164.630	28.400	40.300	98.940
Count	48	24	4	6	14
95%	0.180	0.223	0.887	0.670	0.327

pН	All medium	All low
Mean	6.900	6.680
Std Error	0.000	0.185
Median	6.900	6.700
Mode		
Std Dev		0.415
Variance		0.172
Kurtosis		0.014
Skewness		-0.290
Range	0.000	1.100
Minimum	6.900	6.100
Maximum	6.900	7.200
Sum	6.900	33.400
Count	1	5
95%		0.364

Turbidity log turbidity units

Roads:		Roofs:		
Turbidity	All roads	All roofs	High urban	Low urban
Mean	1.690	0.579	0.785	-0.038
Std Error	0.000	0.221	0.238	0.117
Median	1.690	0.609	0.777	-0.038
Mode				
Std Dev		0.626	0.582	0.166
Variance	•	0.391	0.339	0.027
Kurtosis		-0.901	0.341	
Skewness		0.363	-0.169	
Range	0.000	1.757	1.699	0.234
Minimum	1.690	-0.155	-0.097	-0.155
Maximum	1.690	1.602	1.602	0.079
Sum	1.690	4.636	4.712	-0.076
Count	1 .	8	6	2
95%	<u> </u>	0.434	0.466	0.229

High urban excluding roads & roofs:

nigii urban e.	Acidoniy io	105 & 10015.			
Turbidity	All high	Residential	Industrial	Commercial	Other high
Mean	1.781	1.833	1.362	1.064	2.034
Std Error	0.161	0.201	0.000	0.000	0.080
Median	1.558	1.558	1.362	1.064	2.034
Mode					
Std Dev	0.642	0.696			0.113
Variance	0.412	0.484			0.013
Kurtosis	-0.899	-1.303			
Skewness	0.599	0.532			•
Range	1.854	1.854	0.000	0.000	0.160
Minimum	1.049	1.049	1.362	1.064	1.954
Maximum	2.903	2.903	1.362	1.064	2.114
Sum	28.493	21.999	1.362	1.064	4.068
Count	16	12	1	1	2
95%	0.315	0.394			0.157

Turbidity	All medium	All low
Mean	3.053	1.826
Std Error	0.000	0.000
Median	3.053	1.826
Mode		
Std Dev		
Variance		
Kurtosis		
Skewness		
Range	0.000	0.000
Minimum	3.053	1.826
Maximum	3.053	1.826
Sum	3.053	1.826
Count	1	1
95%		

Appendix B **Total Lead**log(mg/L)

Roads:			-01.			
Lead	All roads	MtStHelens	All others	High urban	Med. urban	Low urban
Mean	-0.660	-0.704	-0.655	-0.619	-0.595	-0.765
Std Error	0.076	0.141	0.083	0.103	0.000	0.148
Median	-0.620	-0.708	-0.603	-0.464	-0.595	-0.638
Mode	-0.046		-0.046	-0.046		
Std Dev	0.529	0.315	0.551	0.581		0.492
Variance	0.280	0.099	0.303	0.337		0.242
Kurtosis	0.099	1.572	-0.035	-0.616		3.979
Skewness	-0.542	0.127	-0.562	-0.467		-1.555
Range	2.307	0.882	2.307	2.307	0.000	1.928
Minimum	-2.000	-1.137	-2.000	-2.000	-0.595	-2.000
Maximum	0.307	-0.255	0.307	0.307	-0.595	-0.072
Sum	-32.350	-3.521	-28.830	-19.822	-0.595	-8.413
Count	49	5	44	32	1	11
95%	0.148	0.276	0.163	0.201		0.291

Roofs:			
Lead	All roofs	High urban	Low urban
Mean	-1.679	-1.504	-2.129
Std Error	0.140	0.119	0.362
Median	-1.678	-1.426	-2.000
Mode	-2.000		-3.301
Std Dev	0.701	0.504	0.957
Variance	0.491	0.254	0.915
Kurtosis	0.738	-0.511	0.442
Skewness	-0.651	-0.127	0.263
Range	2.781	1.822	2.781
Minimum	-3.301	-2.523	-3.301
Maximum	-0.520	-0.701	-0.520
Sum	-41.980	-27.075	-14.905
Count	25	18	7
95%	0.275	0.233	0.709

High urban excluding roads & roofs:								
Lead	All high	Residential	Industrial	Commercial	Other high			
Mean	-0.837	-0.820	-0.840	-0.781	-0.873			
Std Error	0.041	0.054	0.162	0.126	0.076			
Median	-0.738	-0.734	-0.936	-0.698	-0.777			
Mode	-1.398	-1.398		-0.398	-0.337			
Std Dev	0.557	0.474	0.536	0.591	0.640			
Variance	0.310	0.224	0.288	0.349	0.409			
Kurtosis	4.328	-0.023	-1.104	0.438	6.203			
Skewness	-1.318	-0.221	0.181	-0.504	-2.060			
Range	4.138	2.283	1.643	2.465	3.796			
Minimum	-3.699	-1.845	-1.602	-2 <u>.222</u>	-3.699			
Maximum	0.439	0.439	0.041	0.243	0.097			
Sum	-151.443	-63.957	-9.235	-17.175	-61.076			
Count	181	78	11	22	70			
95%	0.081	0.105	0.317	0.247	0.150			

Lead	All medium	All low	Agricultural	Forest	Other low
Mean	-0.983	-1.354	-1.611	-1.349	-1.262
Std Error	0.159	0.150	0.266	0.048	0.212
Median	-0.824	-1.398	-1.548	-1.349	-1.284
Mode	-0.824	-1.398			
Std Dev	0.275	0.620	0.532	0.069	0.703
Variance	0.076	0.385	0.283	0.005	0.494
Kurtosis		-0.149	0.282		-0.459
Skewness	-1.732	-0.105	-0.616		-0.308
Range	0.477	2.382	1.255	0.097	2.382
Minimum	-1.301	-2.523	-2.301	-1.398	-2.523
Maximum	-0.824	-0.141	-1.046	-1.301	-0.141
Sum	-2.949	-23.020	-6.444	-2.699	-13. 87 8
Count	3	17	4	2	11
95%	0.312	0.295	0.521	0.095	0.415

Total Zinc log(mg/L)

~		_	ı _	
_	~~			
11	vo		3	•

Zinc	All roads	MtStHelens	All others	High urban	Med. urban	Low urban
Mean	-0.452	-0.572	-0.437	-0.328	-0.492	-0.709
Std Error	0.058	0.201	0.061	0.066	0.000	0.113
Median	-0.444	-0.453	-0.426	-0.328	-0.492	-0.569
Mode	-0.208		-0.208			-1.222
Std Dev	0.392	0.449	0.388	0.350		0.376
Variance	0.153	0.202	0.150	0.122		0.142
Kurtosis	1.663	1.195	1.915	2.619		-1.603
Skewness	0.305	-0.709	0.445	1.285		-0.343
Range	2.015	1.220	1.985	1.587	0.000	1.014
Minimum	-1.252	-1.252	-1.222	-0.824	-0.492	-1.222
Maximum	0.763	-0.032	0.763	0.763	-0.492	-0.208
Sum	-20.337	-2.859	-17.478	-9.1 8 6	-0.492	-7.800
Count	45	5	40	28	1	11
95%	0.114	0.394	0.120	0.129		0.222

High urban excluding roads & roofs:

Zinc	All high	Residential	Industrial	Commercial	Other high	Non-resid
Mean	-0.619	-0.786	-0.637	-0.461	-0.476	-0.491
Std Error	0.035	0.054	0.078	0.095	0.050	0.040
Median	-0.5 96	-0.760	-0.622	-0.495	-0.498	-0.515
Mode	-0.495	-0.921			-0.495	-0.495
Std Dev	0.433	0.446	0.247	0.415	0.383	0.377
Variance	0.188	0.199	0.061	0.172	0.146	0.142
Kurtosis	1.136	0.547	2.251	0.389	1.108	0.855
Skewness	-0.195	-0.471	1.287	-0.302	0.676	0.505
Range	2.763	2.142	0.809	1.670	2.056	2.195
Minimum	-2.000	-2.000	-0.879	-1.432	-1.292	-1.432
Maximum	0.763	0.142	-0.071	0.238	0.763	0.763
Sum	-96.640	-53.430	-6.369	-8.756	-28.086	-43.210
Count	156	68	10	19	59	88
95%	0.068	0.106	0.153	0.187	0.098	0.079

Medium & low urban

excluding roads & roofs: Roofs:

Zinc	All medium	All low	All roofs	Zinc	Non-zinc	Don't know
Mean	-1.126	-0.706	-0.313	0.573	-0.799	-0.507
Std Error	0.029	0.190	0.171	0.265	0.174	0.235
Median	-1.126	-0.700	-0.475	0.544	-0.989	-0.481
Mode						
Std Dev	0.041	0.537	0.837	0.701	0.551	0.621
Variance	0.002	0.289	0.701	0.491	0.303	0.386
Kurtosis		-0.344	-0.018	-0.910	0.104	1.092
Skewness		-0.232	0.527	0.211	0.592	-0.692
Range	0.058	1.629	3.279	2.014	1.842	1.916
Minimum	-1.155	-1.602	-1.638	-0.374	-1.638	-1.620
Maximum	-1.097	0.027	1.640	1.640	0.204	0.297
Sum	-2.252	-5.645	-7.522	4.014	-7.990	-3.546
Count	2	8	24	7	10	7
95%	0.057	0.372	0.335	0.519	0.341	0.460

Total Copper log(mg/L)

R	O:	a	н	8	•

Copper	All roads	MtStHelens	All others	High urban	Med. urban	Low urban
Mean	-1.004	-0.629	-1.086	-1.040	-1.638	-1.131
Std Error	0.111	0.461	0.091	0.112	0.000	0.149
Median	-1.105	-1.051	-1.119	-1.119	-1.638	-1.013
Mode	-0.854		-0.854	-0.854		
Std Dev	0.587	1.031	0.436	0.460		0.332
Variance	0.344	1.062	0.190	0.212		0.110
Kurtosis	3.032	-1.211	3.080	3.071		1.101
Skewness	1.656	0.801	1.357	1.546		-1.208
Range	2.505	2.449	1.913	1.875	0.000	0.842
Minimum	-1.658	-1.602	-1. 65 8	-1.620	-1.638	-1.658
Maximum	0.847	0.847	0.255	0.255	-1.638	-0.815
Sum	-28.120	-3.145	-24.974	-17.682	-1.638	-5.655
Count	28	5	23	17	1	5
95%	0.217	0.903	0.178	0.219		0.291

High urban excluding roads & roofs:

Tigit di buit	exercianing re-	208 Q 10015.				
Copper	All high	Residential	Industrial	Commercial	Other high	Non-resid
Mean	-1.305	-1.435	-1.191	-1.101	-1.240	-1.210
Std Error	0.040	0.054	0.144	0.151	0.063	0.054
Median	-1.377	-1.444	-1.387	-1.155	-1.255	-1.268
Mode	-1.523	-2.000		-1.155	-1.523	-0.921
Std Dev	0.469	0.416	0.476	0.565	0.471	0.485
Variance	0.220	0.173	0.227	0.320	0.221	0.235
Kurtosis	0.320	-0.634	1.547	-0.765	0.800	0.329
Skewness	0.476	0.107	1.412	0.291	0.491	0.552
Range	2.326	1.716	1.538	1.862	2.326	2.326
Minimum	-2.222	-2.222	-1.635	-1.959	-2.222	-2.222
Maximum	0.104	-0.506	-0.097	-0.097	0.104	0.104
Sum	-182.661	-84.684	-13.096	-15.418	-69.462	-97.9 77
Count	140	59	11	14	56	81
95%	0.078	0.106	0.282	0.296	0.123	0.106

excluding roads & roots:			Roots:		
Copper	All medium	All low	All roofs	High urban	Low urban
Mean	-1.489	-1.431	-1.623	-1.648	-1.567
Std Error	0.335	0.077	0.140	0.187	0.205
Median	-1.489	-1.423	-1.747	-1.824	-1.699
Mode					
Std Dev	0.473	0.188	0.560	0.620	0.459
Variance	0.224	0.035	0.314	0.384	0.211
Kurtosis		-1.214	0.199	0.234	3.528
Skewness	•	-0.280	1.020	1.073	1.778
Range	0.669	0.477	1.869	1.869	1.179
Minimum	-1.824	-1.699	-2.319	-2.319	-1.959
Maximum	-1.155	-1.222	-0.450	-0.450	-0.780
Sum	-2.979	-8.588	-25.960	-18.125	-7.835
Count	2	6	16	11	5
95%	0.656	0.151	0.274	0.366	0.403

Total Cadmium

log(mg/L)

Roads:				Roofs:
Cadmium	All roads	High urban	Low urban	All roofs
Mean	-2.544	-2.594	-2.384	-3.332
Std Error	0.111	0.141	0.089	0.163
Median	-2.553	-2.602	-2.376	-3.171
Mode	-2.229		-2.229	-3.000
Std Dev	0.457	0.509	0.179	0.461
Variance	0.209	0.259	0.032	0.213
Kurtosis	3.869	4.290	-5.860	0.121
Skewness	1.445	1.752	-0.024	-1.160
Range .	1.954	1.954	0.324	1.288
Minimum	-3.155	-3.155	-2.553	-4.174
Maximum	-1.201	-1.201	-2.229	-2.886
Sum	-43.256	-33.722	-9.534	-26.655
Count	17	13	4	8
95%	0.217	0.277	0.175	0.320

High urban excluding roads & roofs:

Cadmium	All high	Residential	Industrial	Commercial	Other high Re	s/Ind/Com
Mean	-2.359	-2.592	-2.447	-2.498	-2.100	-2.547
Std Error	0.070	0.121	0.171	0.308	0.079	0.094
Median	-2.222	-2.387	-2.301	-2.569	-2.041	-2.387
Mode	-2.000	-2.301	-3.000		-2.046	-2.301
Std Dev	0.528	0.553	0.454	0.689	0.389	0.542
Variance	0.279	0.306	0.206	0.475	0.151	0.293
Kurtosis	-0.791	-0.317	-2.214	-2.617	1.553	-0.801
Skewness	-0.410	0.244	-0.344	0.185	-1.173	0.122
Range	2.097	2.097	1.000	1.544	1.495	2.097
Minimum	-3.398	-3.398	-3.000	-3.222	-3.097	-3.398
Maximum	-1.301	-1.301	-2.000	-1.678	-1.602	-1.301
Sum	-134.438	-54.422	-17.126	-12.491	-50.399	-84,039
Count	57	21	7	5	24	33
95%	0.137	0.237	0.336	0.604	0.156	0.185

Cadmium	All Med/Low
Mean	-1.981
Std Error	0.264
Median	-1.801
Mode	-1.602
Std Dev	0.528
Variance	0.279
Kurtosis	1.159
Skewness	-1.342
Range	1.119
Minimum	-2.721
Maximum	-1.602
Sum	-7.925
Count	4
95%	0.517

Total Chromium

log(mg/L)

D	_	9	A	c	
n	u	а	ч	2	_

Chromium	All roads
Mean	-1.908
Std Error	0.083
Median	-1.824
Mode	
Std Dev	0.248
Variance	0.061
Kurtosis	-0.762
Skewness	-0.784
Range	0.663
Minimum	-2.301
Maximum	-1.638
Sum	-17.171
Count	9
95%	0.162

High urban excluding roads & roofs:

Chromium	All high	Residential	Industrial	Commercial	Other high	Non-resid
Mean	-1.608	-1.882	-1.511	-1.712	-1.445	-1.483
Std Error	0.081	0.148	0.181	0.280	0.117	0.093
Median	-1.698	-2.000	-1.697	-1.785	-1.602	-1.620
Mode	-1.699	-2.000			-1.699	-1.699
Std Dev	0.652	0.662	0.544	0.559	0.650	0.615
Variance	0.425	0.438	0.296	0.313	0.422	0.378
Kurtosis	0.026	-0.308	-0.461	0.542	0.745	0.378
Skewness	-0.245	-0.142	0.718	0.690	-0.490	-0.245
Range	3.064	2.477	1.602	1.322	3.064	3.064
Minimum	-3.301	-3.301	-2.222	-2.301	-3.301	-3.301
Maximum	-0.237	-0.824	-0.620	-0.979	-0.237	-0.237
Sum	-102.890	-37.640	-13.595	-6.850	-44.804	-65.250
Count	64	20	9	4	31	44
95%	0.160	0.290	0.355	0.548	0.229	0.182

Mean -1.711 Std Error 0.097 Median -1.620 Mode -1.602 Std Dev 0.194 Variance 0.038 Kurtosis 3.836 Skewness -1.954 Range 0.398 Minimum -2.000 Maximum -1.602 Sum -6.842 Count 4 95% 0.190	Chromium	All med/low
Median -1.620 Mode -1.602 Std Dev 0.194 Variance 0.038 Kurtosis 3.836 Skewness -1.954 Range 0.398 Minimum -2.000 Maximum -1.602 Sum -6.842 Count 4	Mean	-1.711
Mode -1.602 Std Dev 0.194 Variance 0.038 Kurtosis 3.836 Skewness -1.954 Range 0.398 Minimum -2.000 Maximum -1.602 Sum -6.842 Count 4	Std Error	0.097
Std Dev 0.194 Variance 0.038 Kurtosis 3.836 Skewness -1.954 Range 0.398 Minimum -2.000 Maximum -1.602 Sum -6.842 Count 4	Median	-1.620
Variance 0.038 Kurtosis 3.836 Skewness -1.954 Range 0.398 Minimum -2.000 Maximum -1.602 Sum -6.842 Count 4	Mode	-1.602
Kurtosis 3.836 Skewness -1.954 Range 0.398 Minimum -2.000 Maximum -1.602 Sum -6.842 Count 4	Std Dev	0.194
Skewness -1.954 Range 0.398 Minimum -2.000 Maximum -1.602 Sum -6.842 Count 4	Variance	0.038
Range 0.398 Minimum -2.000 Maximum -1.602 Sum -6.842 Count 4	Kurtosis	3.836
Minimum -2.000 Maximum -1.602 Sum -6.842 Count 4	Skewness	-1.954
Maximum -1.602 Sum -6.842 Count 4	Range	0.398
Sum -6.842 Count 4	Minimum	-2.000
Count 4	Maximum	-1.602
	Sum	-6.842
95% 0.190	Count	4
	95%	0.190

Total Nickel

log(mg/L)

Nickel	Ali Roads
Mean	-1.349
Std Error	0.061
Median	-1.347
Mode	
Std Dev	0.106
Variance	0.011
Kurtosis	
Skewness	-0.092
Range	0.212
Minimum	-1.456
Maximum	-1.244
Sum	-4.047
Count	3
95%	0.120

High urban excluding roads & roofs:

Nickel	All High	Residential	Industrial	Commercial	Other High
Mean	-1.502	-1.577	-1.575	-1.586	-1.457
Std Error	0.043	0.077	0.123	0.130	0.059
Median	-1.523	-1.620	-1.658	-1.586	-1.523
Mode	-1.301	-1.301			-1.523
Std Dev	0.299	0.256	0.276	0.184	0.324
Variance	0.089	0.065	0.076	0.034	0.105
Kurtosis	-0.094	-0.777	3.261		-0.245
Skewness	0.327	-0.341	1.666		0.184
Range	1.247	0.750	0.719	0.261	1.247
Minimum	-2.071	-2.051	-1.827	-1.717	-2.071
Maximum	-0.824	-1.301	-1.108	-1.456	-0.824
Sum	-72.100	-17.347	<i>-</i> 7.876	-3.173	-43.704
Count	48	11	5	2	30
95%	0.085	0.151	0.242	0.256	0.116

Low urban excluding roads & roofs:

Nickel	All Low
Mean	-1.605
Std Error	0.052
Median	-1.605
Mode	
Std Dev	0.074
Variance	0.005
Kurtosis	
Skewness	
Range	0.105
Minimum	-1.658
Maximum	-1.553
Sum	-3.210
Count	2
95%	0.103

Total Iron log(mg/L)

_		
_		

1104401			
Iron	All roads	High urban	Low urban
Mean	0.604	0.441	0.727
Std Error	0.147	0.195	0.213
Median	0.534	0.477	0.623
Mode			
Std Dev	0.390	0.338	0.425
Variance	. 0.152	0.114	0.181
Kurtosis	1.550		1.758
Skewness	0.846	-0.475	1.259
Range	1.236	0.673	0.984
Minimum	0.086	0.086	0.338
Maximum	1.322	0.760	1.322
Sum	4.231	1.323	2.907
Count	7	3	4
95%	0.289	0.383	0.417

High urban excluding roads & roofs:

Iron	All high	Residential	Industrial	Commercial	Other high	Non-resid
Mean	0.437	0.202	0.697	0.606	0.651	0.646
Std Error	0.072	0.102	0.053	0.190	0.125	0.084
Median	0.544	0.301	0.627	0.699	0.778	0.699
Mode	0.176	0.176	0.602	0.699		0.602
Std Dev	0.523	0.511	0.119	0.538	0.483	0.446
Variance	0.274	0.261	0.014	0.290	0.233	0.199
Kurtosis	-0.638	-1.050	-2.957	-0.926	-0.634	-0.399
Skewness	-0.398	-0.220	0.634	-0.082	-0.629	-0.500
Range	2.073	1.635	0.243	1.512	1.590	1.683
Minimum	-0.658	-0.658	0.602	-0.097	-0.268	-0.268
Maximum	1.415	0.978	0.845	1.415	1.322	1.415
Sum	23.157	5.056	3.483	4.848	9.770	18.101
Count	53	25	5	8	15	28
95%	0.141	0.200	0.105	0.373	0.244	0.165

Iron	All medium	All Low
Mean	0.592	0.744
Std Error	0.194	0.252
Median	0.592	0.878
Mode		
Std Dev	0.274	0.618
Variance	0.075	0.382
Kurtosis		-1.181
Skewness		-0.153
Range	0.387	1.602
Minimum	0.398	-0.022
Maximum	0.785	1.580
Sum	1.183	4.463
Count	2	6
95%	0.380	0.494

Total Manganese

log(mg/L)

Roads:	
Manganese	All roads
Mean	-0.653
Std Error	0.132
Median	-0.638
Mode	
Std Dev	0.229
Variance	0.053
Kurtosis	
Skewness	-0.291
Range	0.458
Minimum	-0.889
Maximum	-0.432
Sum	-1 <i>.</i> 959
Count	3
95%	0.259

High urban excluding roads & roofs:

Manganese	All high	Residential	Industrial	Commercial	Other high
Mean	-0.627	-0.802	-0.642	-0.361	-0.574
Std Error	0.113	0.244	0.057	0.241	0.186
Median	-0.594	-0.959	-0.642	-0.361	-0.420
Mode	-1.301				
Std Dev	0.453	0.546	0.081	0.341	0.492
Variance	0.206	0.298	0.006	0.117	0.242
Kurtosis	-1.147	2.490			-1.152
Skewness	-0.131	1.502			-0.896
Range	1.405	1.405	0.114	0.483	1.158
Minimum	-1.301	-1.301	-0.699	-0.602	-1.301
Maximum	0.104	0.104	-0.585	-0.119	-0.143
Sum	-10.031	-4.008	-1.284	-0.721	-4.017
Count	16	5	2	2	7
95%	0.222	0.478	0.112	0.473	0.365
					

Manganese	All medium	All low
Mean	-0.796	-1.000
Std Error	0.000	0.000
Median	-0.796	-1.000
Mode		
Std Dev		
Variance		
Kurtosis		
Skewness		
Range	0.000	0.000
Minimum	-0.796	-1.000
Maximum	-0.796	-1.000
Sum	-0.796	-1.000
Count	. 1	1
95%		

Total Mercury log(mg/L)

_		_	
-		_	
-	2	•	е.

Mercury	All roads
Mean	-4.301
Std Error	0.000
Median	-4.301
Mode	
Std Dev	
Variance	
Kurtosis	
Skewness	
Range	0.000
Minimum	-4.301
Maximum	-4.301
Sum	-4.301
Count	1
95%	

High urban excluding roads & roofs:

Mercury	All high	Residential	Industrial	Commercial	Other high
Mean	-3.657	-3.960	-3.377	-2.569	-3.742
Std Error	0.153	0.040	0.000	0.000	0.171
Median	-3.721	-3.960	-3.377	-2.569	-3.721
Mode	-4.000				-4.000
Std Dev	0.550	0.056			0.514
Variance	0.303	0.003			0.265
Kurtosis	0.545				1.734
Skewness	0.764				0.688
Range	1.984	0.079	0.000	0.000	1.854
Minimum	-4.553	-4.000	-3.377	-2.569	-4.553
Maximum	-2.569	-3.921	-3.377	-2.569	-2.699
Sum	-47.543	-7.921	-3.377	-2.569	-33.676
Count	13	2	1	1	. 9
95%	0.299	0.078			0.336

Mercury	All medium	All low
Mean	-4.602	-4.301
Std Error	0.000	0.301
Median	-4.602	-4.301
Mode		
Std Dev	•	0.426
Variance		0.181
Kurtosis		
Skewness		
Range	0.000	0.602
Minimum	-4.602	-4.602
Maximum	-4.602	-4.000
Sum	-4.602	-8.602
Count	1	2
95%		0.590

Total Coliforms

log(#/100mL)

Roads:		Roofs:
Total Coli	All roads	All roofs
Mean	4.204	1.690
Std Error	0.000	0.018
Median	4.204	1.690
Mode		
Std Dev		0.025
Variance.		0.001
Kurtosis		
Skewness		
Range	0.000	0.035
Minimum	4.204	1.672
Maximum	4.204	1.708
Sum	4.204	3.380
Count	1	2
95%		0.035

High urban excluding roads & roofs:

4.152 0.729 4.152	Other high 4.857 0.173 5.057
0.729	0.173
4.152	5.057
1.031	0.849
1.062	0.721
	1.811
	-1.174
1.458	3.716
3.423	2.364
4.881	6.079
8.304	116.557
2	24
1.428	0.340
,	1.062 1.458 3.423 4.881 8.304

Total Coli	All medium	All low
Mean	6.591	3.697
Std Error	0.000	0.138
Median	6.591	3.560
Mode		3.477
Std Dev		0.338
Variance		0.114
Kurtosis		0.653
Skewness		1.224
Range	0.000	0.881
Minimum	6.591	3.398
Maximum	6.591	4.279
Sum	6.591	22.183
Count	1	6
95%		0.271

Fecal Coliforms

log(#/100mL)

Roads:		Roofs:		
Fecal Coli	All Roads	All roofs	High urban	Low urban
Mean	3.847	1.728	1.819	1.181
Std Error	0.184	0.285	0.308	0.880
Median	3.681	2.061	2.074	1.181
Mode		2.061		
Std Dev	0.612	1.065	1.066	1.244
Variance	0.374	1.135	1.137	1.548
Kurtosis	-0.459	-0.667	-0.202	
Skewness	0.718	-0.531	-0.694	
Range	1.818	3.505	3.505	1.760
Minimum	3.146	-0.301	-0.301	0.301
Maximum	4.964	3.204	3.204	2.061
Sum	42.314	24.193	21.831	2.362
Count	11	14	12	2
95%	0.362	0.558	0.603	1.724

High urban excluding roads & roofs

nigh urban e	Excluding 102	102 & 10012				
Fecal Coli	All high	Residential	Industrial	Commercial	Other high	Non-resid
Mean	3.896	4.379	3.575	3.461	3.321	3.376
Std Error	0.126	0.151	0.370	0.384	0.219	0.172
Median	3.863	4.219	3.569	3.468	3.176	3.279
Mode	5.477	5.477				2.477
Std Dev	1.137	0.977	0.740	1.087	1.140	1.076
Variance	1.293	0.955	0.548	1.181	1.299	1.158
Kurtosis	-0.219	-0.506	0.821	1.173	-0.467	-0.261
Skewness	-0.067	0.142	0.046	0.448	-0.022	-0.004
Range	5.531	4.276	1.791	3.651	4.491	4.491
Minimum	1.000	2.255	2.686	1.826	1.000	1.000
Maximum	6.531	6.531	4.477	5.477	5.491	5.491
Sum	315.581	183.915	14.302	27.691	89.674	131.666
Count	81	42	4	8	27	39
95%	0.248	0.296	0.725	0.753	0.430	0.338

medium & low urban excluding roads & roots:						
Fecal Coli	All medium	All low	Agricultural	Forest	Other low	
Mean	4.622	1.879	1.308	1.591	2.926	
Std Error	1.031	0.397	0.501	0.000	0.466	
Median	4.622	1.591	1.255	1.591	2.863	
Mode						
Std Dev	1.458	1.190	1.120		0.807	
Variance	2.126	1.416	1.254		0.652	
Kurtosis		-0.658	2.179			
Skewness		0.132	0.967		0.349	
Range	2.062	3.763	3.079	0.000	1.611	
Minimum	3.591	0.000	0.000	1.591	2.152	
Maximum	5.653	3.763	3.079	1.591	3.763	
Sum	9.244	16.909	6.539	1.591	8.779	
Count	2	9	5	1	3	
95%	2.021	0.777	0.981		0.914	

Fecal Streptococci log(#/100mL)

Roads:		Roofs:
Fecal Strep	All roads	All roofs
Mean	3.649	2.906
Std Error	0.251	0.067
Median	3.898	2.906
Mode		
Std Dev	0.561	0.095
Variance	0.314	0.009
Kurtosis	-2.157	
Skewness	-0.336	
Range	1.336	0.134
Minimum	2.954	2.839
Maximum	4.290	2.973
Sum	18.247	5.812
Count	5	2
95%	0.491	0.132

High urban excluding roads & roofs:

Feçal Strep	All high	Residential	Commercial	Other high	Non-resid
Mean	4.279	4.694	4.505	3.732	3.818
Std Error	0.231	0.243	0.000	0.394	0.358
Median	4.322	4.627	4.505	3.708	3.792
Mode			,		5., 52
Std Dev	1.005	0.768		1.115	1.075
Variance	1.010	0.590		1,244	1.155
Kurtosis	2.332	-1.111		2.098	2.437
Skewness	-0.930	0.287		-1.081	-1.268
Range	4.357	2.228	0.000	3.684	3.684
Minimum	1.462	3.591	4.505	1.462	1.462
Maximum	5.820	5.820	4.505	5.146	5.146
Sum	81.305	46.943	4.505	29.857	34.362
Count	19	10.540	4.003	23.637	9
95%	0.452	0.476	•	0.773	0.702
0070	J.40 <u>E</u>	0.470		0.770	0.702

Low urban excluding roads & roofs:

LDW dibali excluding roads & roots.					
Fecal Strep	All low	Agricultural	Other low		
Mean	3.648	3.299	4.230		
Std Error	0.210	0.201	880.0		
Median	3.746	3.176	4.233		
Mode					
Std Dev	0.595	0.450	0.152		
Variance	0.354	0.202	0.023		
Kurtosis	-1 .66 6	-0.896			
Skewness	-0.252	0.501	-0.101		
Range	1.595	1.139	0.305		
Minimum	2.785	2.785	4.076		
Maximum	4.380	3.924	4.380		
Sum	29.184	16.495	12.689		
Count	8	5	3		
95%	0.412	0.394	0.172		

APPENDIX C

Coefficients of Concentration vs Catchment Characteristics

Regression coefficients (in the log domain) are tabulated for a range of water quality parameters, land uses, and catchment characteristics. Empty cells indicate a sample size too small for analysis. Quality parameters with no numeric entries have been omitted. Three levels of statistical significance are indicated by the density of type.

Appendix C

Quality Parameter	Land Use	Appendix	pefficients of log o	Oncentration ver	116.
adding a diamotor	-Cana OSC	Vehicles/day	Rainfall (mm)	Impervious (%)	People/ha
Suspended Solids	Roads	n.s.	-0.00057	0.00675	георієліа
	Roofs		0.00030	1	[
	High urban		-0.00064	n.s.	n.s.
	Low urban		n.s.		
Total Phosphorus	Roads	-0.000013	n.s.		
	Roofs				}
	High urban		n.s.	-0.00185	n.s.
	Low urban		-0.00030		
Total Nitrogen	Roads	i	-0.00027		,
	Roofs				
	High urban	1	-0.00028	0.00170	0.00326
BOD	Low urban Roads		-0.00038	·	<u> </u>
BO <i>D</i>	Roofs				į
	High urban		n.s.	n.s.	0.00162
	Low urban		12.2	•1.5.	0.00162
COD	Roads	0.000002	-0.00032	n.s.	
	Roofs				
	High urban		-0.00032	0.00181	0.00076
	Low urban		n.s.		
Total Organic Carbon	Roads				
	Roofs	•			
	High urban		-0.00054		
	Low urban				<u> </u>
Total Lead	Roads	0.000006	n.s.	n.s.	
	Roofs		0.00061		
	High urban		n.s.	0.00429	-0.00118
Total Zinc	Low urban Roads	0.000003	n.s.	n.s.	
otal Zinc	Roofs	0.000003	-0.00033	0.00576	
	High urban		n.s. -0.00029	0.00385	0.00100
	Low urban		-0.00029	0.00363	-0.00168
Total Cadmium	Roads	0.000004	n.s.	n.s.	
	Roofs		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
	High urban		n.s.	-0.01065	-0.00234
	Low urban		Í		
Total Chromium	Roads				
	Roofs		Ì		
	High urban		-0.00037	n.s.	-0.00936
	Low urban				
Total Copper	Roads	n.s.	-0.00034	n.s.	
	Roofs	1	n.s.		
	High urban		-0.00031	n.s.	n.s.
otal Nickel	Low urban Roads	 			<u> </u>
ORD MONOT	Roofs				
	High urban		-0.00022	-0.00624	
	Low urban		-V.000EE	-U.UU024	n.s.
otal Iron	Roads	1			
	Roofs				
	High urban	j l	-0.00030	0.00690	
	Low urban				
otal Mercury	Roads				
	Roofs	1			
	High urban	1	0.00122	n.s.	n.s.
	Low urban				
otal Coliforms	Roads	1			
	Roofs				
	High urban]	0.00113	Ì	0.00554
ecal Coliforms	Low urban Roads	 			
eddi Comonns	Roofs		Ī		!
	High urban	1	n.s.	n.s.	0.01031
; !	Low urban	1	160.		V.U1U31
ecal Streptococci	Roads	 +	 		
	Roofs	1	,		
	High urban	[0.00166		n.s.
	Low urban	<u> </u>			· ·
	ested, n.s. = not signi				

The Cooperative Research Centre for Catchment Hydrology is a cooperative venture formed under the Commonwealth CRC Program between:

Bureau of Meteorology

CSIRO Land and Water

Department of Natural Resources and Environment

Goulburn-Murray Water

Melbourne Water

Monash University

Murray-Darling Basin Commission

Southern Rural Water

The University of Melbourne

Wimmera-Mallee Water

Associate

State Forests of NSW

CATCHMENT HYDROLOGY

Centre Office

Department of Civil Engineering, Monash University, Clayton, Victoria 3168, Australia. Telephone: (03) 9905 2704 Facsimile: (03) 9905 5033 International: +61 3 9905 2704 http://www-civil.eng.monash.edu.au/centres/crcch/